DR-PETS: Learning-Based Control With Planning in Adversarial Environments

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Hozefa Jesawada;Antonio Acernese;Davide Del Vecchio;Giovanni Russo;Carmen Del Vecchio
{"title":"DR-PETS: Learning-Based Control With Planning in Adversarial Environments","authors":"Hozefa Jesawada;Antonio Acernese;Davide Del Vecchio;Giovanni Russo;Carmen Del Vecchio","doi":"10.1109/LCSYS.2025.3587053","DOIUrl":null,"url":null,"abstract":"The probabilistic ensembles with trajectory sampling (PETS) algorithm is a recognized baseline among model-based reinforcement learning (MBRL) methods. PETS incorporates planning and handles uncertainty using ensemble-based probabilistic models. However, no formal robustness guarantees against epistemic uncertainty exist for PETS. Providing such guarantees is a key enabler for reliable real-world deployment. To address this gap, we propose a distributionally robust extension of PETS, called DR-PETS. We formalize model uncertainty using a distributional ambiguity set and optimize the worst-case expected return. We derive a tractable convex approximation of the resulting min-max planning problem, which integrates seamlessly into PETS’s planning loop as a regularized objective. Experiments on pendulum and cart-pole environments show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2006-2011"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11075840/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The probabilistic ensembles with trajectory sampling (PETS) algorithm is a recognized baseline among model-based reinforcement learning (MBRL) methods. PETS incorporates planning and handles uncertainty using ensemble-based probabilistic models. However, no formal robustness guarantees against epistemic uncertainty exist for PETS. Providing such guarantees is a key enabler for reliable real-world deployment. To address this gap, we propose a distributionally robust extension of PETS, called DR-PETS. We formalize model uncertainty using a distributional ambiguity set and optimize the worst-case expected return. We derive a tractable convex approximation of the resulting min-max planning problem, which integrates seamlessly into PETS’s planning loop as a regularized objective. Experiments on pendulum and cart-pole environments show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.
DR-PETS:对抗环境中基于学习的计划控制
轨迹采样概率集成(PETS)算法是基于模型的强化学习(MBRL)方法中公认的基础。pet结合了规划和使用基于集成的概率模型处理不确定性。然而,对于pet来说,不存在针对认知不确定性的正式鲁棒性保证。提供这样的保证是实现可靠的实际部署的关键。为了解决这一差距,我们提出了一种分布鲁棒的pet扩展,称为DR-PETS。我们使用一个分布模糊集形式化模型的不确定性,并优化最坏情况下的期望收益。我们导出了一个易于处理的最小-最大规划问题的凸逼近,该问题作为正则化目标无缝地集成到PETS的规划循环中。在摆和车杆环境下的实验表明,DR-PETS证明了对对抗性参数扰动的鲁棒性,在PETS恶化的最坏情况下也能保持一致的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信