Enhancing DORT Method Performance in Time-Reversal Microwave Imaging Through Denoising Autoencoder

IF 1.5 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hamed Rezaei;Amir Nader Askarpour;Abdolali Abdipour
{"title":"Enhancing DORT Method Performance in Time-Reversal Microwave Imaging Through Denoising Autoencoder","authors":"Hamed Rezaei;Amir Nader Askarpour;Abdolali Abdipour","doi":"10.1109/JMMCT.2025.3589191","DOIUrl":null,"url":null,"abstract":"We investigate the impact of noise on time-reversal imaging and propose an approach that significantly enhances the detection of objects in noisy environments. Our method involves the decomposition of the time-reversal operator at a single frequency, known for its sensitivity to noise. We utilize a specific autoencoder architecture to denoise the generated dataset from a multi-static data matrix (MDM), effectively separating the signal sub-space from the noise sub-space, even at low signal-to-noise ratios (SNRs) ranging from −5 dB to high levels of SNR. This dataset is generated by simulating scatterers mounted at various locations within a two-dimensional (2D) grid, each with different SNRs.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"360-369"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11080272/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the impact of noise on time-reversal imaging and propose an approach that significantly enhances the detection of objects in noisy environments. Our method involves the decomposition of the time-reversal operator at a single frequency, known for its sensitivity to noise. We utilize a specific autoencoder architecture to denoise the generated dataset from a multi-static data matrix (MDM), effectively separating the signal sub-space from the noise sub-space, even at low signal-to-noise ratios (SNRs) ranging from −5 dB to high levels of SNR. This dataset is generated by simulating scatterers mounted at various locations within a two-dimensional (2D) grid, each with different SNRs.
通过去噪自编码器增强时间反转微波成像中的DORT方法性能
我们研究了噪声对时间反转成像的影响,并提出了一种显著增强噪声环境中目标检测的方法。我们的方法是将时间反转算子分解为对噪声敏感的单一频率。我们利用特定的自编码器架构从多静态数据矩阵(MDM)中对生成的数据集进行降噪,有效地将信号子空间与噪声子空间分离,即使在从- 5 dB到高信噪比的低信噪比(SNR)下也是如此。该数据集是通过模拟安装在二维(2D)网格内不同位置的散射体生成的,每个散射体具有不同的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信