A Unified Framework for Adaptive Beamforming and State Estimation in Dynamic Multi-Lane V2V Networks

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nivetha Kanthasamy;Raghvendra V. Cowlagi;Alexander Wyglinski
{"title":"A Unified Framework for Adaptive Beamforming and State Estimation in Dynamic Multi-Lane V2V Networks","authors":"Nivetha Kanthasamy;Raghvendra V. Cowlagi;Alexander Wyglinski","doi":"10.1109/OJVT.2025.3590673","DOIUrl":null,"url":null,"abstract":"This paper presents a Vehicle-to-Vehicle (V2V) communication modeling framework that addresses the challenges of reliable state estimation and beamforming control in dynamic, multi-lane road environments. By integrating an extended Unscented Kalman Filter (UKF) with adaptive process and measurement noise models, the proposed approach accurately tracks vehicle trajectories under abrupt speed variations, frequent lane changes, and adverse weather conditions. A Markov chain-based lane-switching mechanism enables realistic multi-lane traffic simulations with smooth centerline trajectories spanning straight and curved road segments. To further enhance robustness, an adaptive Minimum Variance Distortionless Response (MVDR) beamforming scheme compensates for beam misalignment and mitigates interference, thereby significantly improving the Signal-to-Interference-Plus-Noise Ratio (SINR). The results demonstrate that the framework not only offers improved positioning accuracy but also achieves reliable communication performance compared to conventional methods, reinforcing its effectiveness in complex vehicular scenarios.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2085-2100"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11083750","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11083750/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Vehicle-to-Vehicle (V2V) communication modeling framework that addresses the challenges of reliable state estimation and beamforming control in dynamic, multi-lane road environments. By integrating an extended Unscented Kalman Filter (UKF) with adaptive process and measurement noise models, the proposed approach accurately tracks vehicle trajectories under abrupt speed variations, frequent lane changes, and adverse weather conditions. A Markov chain-based lane-switching mechanism enables realistic multi-lane traffic simulations with smooth centerline trajectories spanning straight and curved road segments. To further enhance robustness, an adaptive Minimum Variance Distortionless Response (MVDR) beamforming scheme compensates for beam misalignment and mitigates interference, thereby significantly improving the Signal-to-Interference-Plus-Noise Ratio (SINR). The results demonstrate that the framework not only offers improved positioning accuracy but also achieves reliable communication performance compared to conventional methods, reinforcing its effectiveness in complex vehicular scenarios.
动态多车道V2V网络自适应波束形成和状态估计的统一框架
本文提出了一种车对车(V2V)通信建模框架,该框架解决了动态多车道道路环境中可靠状态估计和波束形成控制的挑战。通过将扩展的Unscented卡尔曼滤波(UKF)与自适应过程和测量噪声模型相结合,该方法可以在突然的速度变化、频繁的车道变化和恶劣的天气条件下准确地跟踪车辆轨迹。一种基于马尔可夫链的车道切换机制能够实现真实的多车道交通模拟,具有平滑的中心线轨迹,跨越直线和弯曲路段。为了进一步增强鲁棒性,自适应最小方差无失真响应(MVDR)波束形成方案补偿波束失调并减轻干扰,从而显著提高信噪比(SINR)。结果表明,与传统方法相比,该框架不仅提高了定位精度,而且实现了可靠的通信性能,增强了其在复杂车辆场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信