The versatile role of guard cell starch in speedy stomata: Beyond Arabidopsis

IF 7.5 2区 生物学 Q1 PLANT SCIENCES
Hongyuan Zhang, Trang Dang, Lucia Piro, Diana Santelia
{"title":"The versatile role of guard cell starch in speedy stomata: Beyond Arabidopsis","authors":"Hongyuan Zhang,&nbsp;Trang Dang,&nbsp;Lucia Piro,&nbsp;Diana Santelia","doi":"10.1016/j.pbi.2025.102762","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering rapid stomatal responses to improve the coordination between stomatal conductance and carbon assimilation under fluctuating light conditions is crucial for enhancing crop productivity while conserving water. To identify promising engineering targets, we applied machine learning models to analyze published data from diverse plant lineages to reveal the primary factors driving the natural variation in the speed of stomatal opening. We highlight the versatile role of guard cell starch in integrating and modulating some of these factors and suggest starch as a previously overlooked target for optimizing stomatal function.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"87 ","pages":"Article 102762"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526625000767","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering rapid stomatal responses to improve the coordination between stomatal conductance and carbon assimilation under fluctuating light conditions is crucial for enhancing crop productivity while conserving water. To identify promising engineering targets, we applied machine learning models to analyze published data from diverse plant lineages to reveal the primary factors driving the natural variation in the speed of stomatal opening. We highlight the versatile role of guard cell starch in integrating and modulating some of these factors and suggest starch as a previously overlooked target for optimizing stomatal function.

Abstract Image

保卫细胞淀粉在快速气孔中的多功能作用:超越拟南芥
在波动光照条件下,设计快速的气孔响应来改善气孔导度与碳同化之间的协调,对于提高作物产量和节约水分至关重要。为了确定有希望的工程目标,我们应用机器学习模型来分析来自不同植物谱系的已发表数据,以揭示驱动气孔打开速度自然变化的主要因素。我们强调了保护细胞淀粉在整合和调节这些因素中的多种作用,并建议淀粉作为一个以前被忽视的优化气孔功能的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信