{"title":"The exact Turán number of disjoint graphs– A generalization of Simonovits’ theorem, and beyond","authors":"Guantao Chen , Xingyu Lei , Shuchao Li","doi":"10.1016/j.ejc.2025.104226","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <span><math><mi>H</mi></math></span>, we say that a graph <span><math><mi>G</mi></math></span> is <span><math><mi>H</mi></math></span><em>-free</em> if it does not contain <span><math><mi>H</mi></math></span> as a subgraph. Let <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the maximum size (resp. spectral radius) of an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graph, and <span><math><mrow><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the set of all <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graphs with <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> edges (resp. spectral radius <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>). We call <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) the <em>Turán number</em> (resp. <em>spectral Turán number</em>) of <span><math><mi>H</mi></math></span>. Suppose that we know the exact values of Turán numbers of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, respectively. Can we get the exact value of the Turán number of the disjoint union of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>? Moon considered the disjoint union of complete graphs. A graph <span><math><mi>G</mi></math></span> is <em>color-critical</em> if there exists an edge <span><math><mi>e</mi></math></span> such that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>e</mi><mo>)</mo></mrow><mo><</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Simonovits extended Moon’s result to the disjoint union of <em>color-critical graphs</em> for sufficiently large <span><math><mi>n</mi></math></span>. Erdős et al. determined the Turán number of triangles sharing exactly one vertex. Chen et al. extended the result to complete graphs sharing exactly one vertex. Let <span><math><mi>F</mi></math></span> be a disjoint union of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a graph obtained by joining a vertex to all vertices of <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></math></span> and each <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></math></span> is a color-critical graph. For a large <span><math><mi>n</mi></math></span>, we determined <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we show that for each <span><math><mi>F</mi></math></span> of these graphs, <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>⊆</mo><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> provided <span><math><mi>n</mi></math></span> is sufficiently large, which provides a large class of graphs that gives a positive answer to an open problem proposed recently by Liu and Ning: Characterize graphs <span><math><mi>F</mi></math></span> satisfying <span><math><mrow><msub><mrow><mi>Ex</mi></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>⊆</mo><mi>Ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104226"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a given graph , we say that a graph is -free if it does not contain as a subgraph. Let (resp. ) denote the maximum size (resp. spectral radius) of an -vertex -free graph, and (resp. ) denote the set of all -vertex -free graphs with edges (resp. spectral radius ). We call (resp. ) the Turán number (resp. spectral Turán number) of . Suppose that we know the exact values of Turán numbers of , respectively. Can we get the exact value of the Turán number of the disjoint union of ? Moon considered the disjoint union of complete graphs. A graph is color-critical if there exists an edge such that . Simonovits extended Moon’s result to the disjoint union of color-critical graphs for sufficiently large . Erdős et al. determined the Turán number of triangles sharing exactly one vertex. Chen et al. extended the result to complete graphs sharing exactly one vertex. Let be a disjoint union of , where is a graph obtained by joining a vertex to all vertices of and each is a color-critical graph. For a large , we determined and . Moreover, we show that for each of these graphs, provided is sufficiently large, which provides a large class of graphs that gives a positive answer to an open problem proposed recently by Liu and Ning: Characterize graphs satisfying .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.