Architecting MXene-based nanocomposite coatings: A paradigm shift in electromagnetic shielding

IF 5.45 Q1 Physics and Astronomy
Yash Avhad , Shruti Gupta , Arul Jeya Kumar , Balasubramanian Kandasubramanian
{"title":"Architecting MXene-based nanocomposite coatings: A paradigm shift in electromagnetic shielding","authors":"Yash Avhad ,&nbsp;Shruti Gupta ,&nbsp;Arul Jeya Kumar ,&nbsp;Balasubramanian Kandasubramanian","doi":"10.1016/j.nanoso.2025.101523","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes, a swiftly sprouting genus of transition metals with two-dimensional (2D) structures have engrossed momentous exploration interest due to their peculiar chemicophysical attributes and disparate prospective solicitations. This review bestows an encyclopaedic investigation of the characteristics of MXenes, such as their exceptional electromagnetic shielding, configurable chemistry, and stratified structure. These possessions are predominantly determined by idiosyncratic configuration, with–OH, –O, and –F as functional groups. The nucleuses on pioneering synthesis and etching for several MXenes. The emphasis on the exceptional electromagnetic interference (EMI) shielding capabilities of MXenes, which is conceivably pronounced by inherent outstanding dielectric characteristics, and multi-scale structures that postulate efficacious raptness and replication of electromagnetic waves. Furthermore, the photothermal conversion characteristics of MXenes are philanthroping. This mightily interests contenders for various applications. MXenes, illustrated elevated mechanical properties, which are levied in relation to their assimilation into composite materials, where they serve as fortifying agents to enhance robustness and longevity. Moreover, the review scrutinizes the diverse uses for MXenes, including highly vital aerospace, stealth, military, wearable electronics, and energy repository devices like supercapacitors. By synthesizing current progress in the investigation of MXenes, this paper emphasizes their capacity to operate as versatile materials in futuristic defence pertinent technologies.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"43 ","pages":"Article 101523"},"PeriodicalIF":5.4500,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25000939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes, a swiftly sprouting genus of transition metals with two-dimensional (2D) structures have engrossed momentous exploration interest due to their peculiar chemicophysical attributes and disparate prospective solicitations. This review bestows an encyclopaedic investigation of the characteristics of MXenes, such as their exceptional electromagnetic shielding, configurable chemistry, and stratified structure. These possessions are predominantly determined by idiosyncratic configuration, with–OH, –O, and –F as functional groups. The nucleuses on pioneering synthesis and etching for several MXenes. The emphasis on the exceptional electromagnetic interference (EMI) shielding capabilities of MXenes, which is conceivably pronounced by inherent outstanding dielectric characteristics, and multi-scale structures that postulate efficacious raptness and replication of electromagnetic waves. Furthermore, the photothermal conversion characteristics of MXenes are philanthroping. This mightily interests contenders for various applications. MXenes, illustrated elevated mechanical properties, which are levied in relation to their assimilation into composite materials, where they serve as fortifying agents to enhance robustness and longevity. Moreover, the review scrutinizes the diverse uses for MXenes, including highly vital aerospace, stealth, military, wearable electronics, and energy repository devices like supercapacitors. By synthesizing current progress in the investigation of MXenes, this paper emphasizes their capacity to operate as versatile materials in futuristic defence pertinent technologies.

Abstract Image

构建基于mxene的纳米复合涂层:电磁屏蔽的范式转变
MXenes是一种迅速发展的具有二维结构的过渡金属,由于其独特的化学物理属性和不同的前景,引起了人们极大的探索兴趣。这篇综述对MXenes的特性进行了百科全书式的研究,例如其特殊的电磁屏蔽、可配置的化学和分层结构。这些占有主要是由特殊结构决定的,- oh, -O和-F是官能团。几种MXenes的开创性合成和刻蚀的核。强调MXenes的特殊电磁干扰(EMI)屏蔽能力,这可以通过固有的杰出介电特性和多尺度结构来实现,这些结构可以假设电磁波的有效捕获和复制。此外,MXenes光热转换特性是慈善的。这极大地吸引了各种应用的竞争者。MXenes显示了机械性能的提高,这与它们在复合材料中的同化有关,在复合材料中,它们作为强化剂来增强坚固性和寿命。此外,该报告还详细审查了MXenes的各种用途,包括至关重要的航空航天、隐身、军事、可穿戴电子产品和超级电容器等能量存储设备。通过综合目前MXenes的研究进展,本文强调了它们在未来国防相关技术中作为多功能材料的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信