Sara A. Garcia , Anne M. Neumaier , Michael Kohlhaas , Anton Xu , Alexander Nickel , Katharina J. Ermer , Luzia Enzner , Christoph Maack , Vasco Sequeira , Christopher N. Johnson
{"title":"Calmodulin enhancement of mitochondrial calcium uniporter function in isolated mitochondria","authors":"Sara A. Garcia , Anne M. Neumaier , Michael Kohlhaas , Anton Xu , Alexander Nickel , Katharina J. Ermer , Luzia Enzner , Christoph Maack , Vasco Sequeira , Christopher N. Johnson","doi":"10.1016/j.ceca.2025.103056","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial calcium (Ca<sup>2+</sup>) uptake and factors that regulate this process have been an area of immense interest given the roles in cellular energetics. Here, we have investigated the ability of the Ca<sup>2+</sup> sensing protein Calmodulin (CaM) to modify the function of the Mitochondrial Ca<sup>2+</sup> Uniporter (MCU). Our data leveraged recombinantly produced CaM and mitochondria isolated from healthy and MCU impaired/diseased mice (Barth syndrome model). We found CaM enhanced Ca<sup>2+</sup> uptake in both the absence and presence of CaMKII inhibition (KN93 as well as AIP). Mitochondria lacking function MCU (Barth syndrome model) validated that MCU was responsible for Ca<sup>2+</sup> uptake in our experiments. Control experiments demonstrate that the observed CaM enhancement does not arise from CaM Ca<sup>2+</sup> buffering. Fitting the Ca<sup>2+</sup>fluorescence data supported a monophasic decay process where the presence of CaM yielded enhanced kinetic rates of Ca<sup>2+</sup> uptake. This CaM enhancement effect persisted in the presence of PTP impairment (cyclosporin), and subtle modification to the CaM protein sequence (D131E) revealed that an intact CaM-C domain Ca<sup>2+</sup> binding was required for enhancement of MCU function.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"131 ","pages":"Article 103056"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014341602500065X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial calcium (Ca2+) uptake and factors that regulate this process have been an area of immense interest given the roles in cellular energetics. Here, we have investigated the ability of the Ca2+ sensing protein Calmodulin (CaM) to modify the function of the Mitochondrial Ca2+ Uniporter (MCU). Our data leveraged recombinantly produced CaM and mitochondria isolated from healthy and MCU impaired/diseased mice (Barth syndrome model). We found CaM enhanced Ca2+ uptake in both the absence and presence of CaMKII inhibition (KN93 as well as AIP). Mitochondria lacking function MCU (Barth syndrome model) validated that MCU was responsible for Ca2+ uptake in our experiments. Control experiments demonstrate that the observed CaM enhancement does not arise from CaM Ca2+ buffering. Fitting the Ca2+fluorescence data supported a monophasic decay process where the presence of CaM yielded enhanced kinetic rates of Ca2+ uptake. This CaM enhancement effect persisted in the presence of PTP impairment (cyclosporin), and subtle modification to the CaM protein sequence (D131E) revealed that an intact CaM-C domain Ca2+ binding was required for enhancement of MCU function.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes