Weak well-posedness by transport noise for a class of 2D fluid dynamics equations

IF 1.6 2区 数学 Q1 MATHEMATICS
Lucio Galeati , Dejun Luo
{"title":"Weak well-posedness by transport noise for a class of 2D fluid dynamics equations","authors":"Lucio Galeati ,&nbsp;Dejun Luo","doi":"10.1016/j.jfa.2025.111158","DOIUrl":null,"url":null,"abstract":"<div><div>We establish well-posedness in law for a general class of stochastic 2D fluid dynamics equations with <span><math><mo>(</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>-valued vorticity and finite kinetic energy; the noise is of Kraichnan type and spatially rough, and we allow the presence of a deterministic forcing <em>f</em>. This class includes as primary examples logarithmically regularized 2D Euler and hypodissipative 2D Navier–Stokes equations. In the first case, our result solves the open problem posed by Flandoli in <span><span>[43]</span></span>. In the latter case, for well-chosen forcing <em>f</em>, the corresponding deterministic PDE without noise has recently been shown in <span><span>[3]</span></span> to be ill-posed; consequently, the addition of noise truly improves the solution theory for such PDE.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111158"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003404","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish well-posedness in law for a general class of stochastic 2D fluid dynamics equations with (Lx1Lx2)-valued vorticity and finite kinetic energy; the noise is of Kraichnan type and spatially rough, and we allow the presence of a deterministic forcing f. This class includes as primary examples logarithmically regularized 2D Euler and hypodissipative 2D Navier–Stokes equations. In the first case, our result solves the open problem posed by Flandoli in [43]. In the latter case, for well-chosen forcing f, the corresponding deterministic PDE without noise has recently been shown in [3] to be ill-posed; consequently, the addition of noise truly improves the solution theory for such PDE.
一类二维流体动力学方程的输运噪声弱适定性
建立了一类具有(Lx1∩Lx2)涡量值和有限动能的二维随机流体动力学方程的律性;噪声是Kraichnan型和空间粗糙的,并且我们允许确定性强迫f的存在。这类包括作为主要例子的对数正则化二维欧拉方程和低耗散二维Navier-Stokes方程。在第一种情况下,我们的结果解决了Flandoli在[43]中提出的开放问题。在后一种情况下,对于精心选择的强迫f,最近在[3]中显示出相应的无噪声确定性偏微分方程是病态的;因此,噪声的加入确实改进了这类偏微分方程的解理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信