Jonathan Acosta , Ronny Vallejos , Pilar García-Soidán
{"title":"A penalized estimation of the variogram and effective sample size","authors":"Jonathan Acosta , Ronny Vallejos , Pilar García-Soidán","doi":"10.1016/j.spasta.2025.100921","DOIUrl":null,"url":null,"abstract":"<div><div>The variogram function plays a key role in modeling intrinsically stationary random fields, especially in spatial prediction using kriging equations. However, determining whether a computed variogram accurately fits the underlying dependence structure can be challenging. Current nonparametric estimators often fail to guarantee a conditionally negative definite function. In this paper, we propose a new valid variogram estimator, constructed as a linear combination of functions from a predefined class, ensuring it meets essential mathematical properties. A penalty coefficient is introduced to prevent overfitting, reducing spurious fluctuations in the estimated variogram. We also extend the concept of effective sample size (ESS), an important metric in spatial regression, to a nonparametric framework. Our ESS estimator is based on the reciprocal of the average correlation and is calculated using a plug-in approach, with the consistency of the estimator being demonstrated. The performance of these estimates is investigated through Monte Carlo simulations across various scenarios. Finally, we apply the methodology to rasterized forest images, illustrating both the strengths and limitations of the proposed approach.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"69 ","pages":"Article 100921"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The variogram function plays a key role in modeling intrinsically stationary random fields, especially in spatial prediction using kriging equations. However, determining whether a computed variogram accurately fits the underlying dependence structure can be challenging. Current nonparametric estimators often fail to guarantee a conditionally negative definite function. In this paper, we propose a new valid variogram estimator, constructed as a linear combination of functions from a predefined class, ensuring it meets essential mathematical properties. A penalty coefficient is introduced to prevent overfitting, reducing spurious fluctuations in the estimated variogram. We also extend the concept of effective sample size (ESS), an important metric in spatial regression, to a nonparametric framework. Our ESS estimator is based on the reciprocal of the average correlation and is calculated using a plug-in approach, with the consistency of the estimator being demonstrated. The performance of these estimates is investigated through Monte Carlo simulations across various scenarios. Finally, we apply the methodology to rasterized forest images, illustrating both the strengths and limitations of the proposed approach.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.