Connections between S-operators and restriction estimates for spheres over finite fields

IF 1.2 3区 数学 Q1 MATHEMATICS
Hunseok Kang , Doowon Koh
{"title":"Connections between S-operators and restriction estimates for spheres over finite fields","authors":"Hunseok Kang ,&nbsp;Doowon Koh","doi":"10.1016/j.jmaa.2025.129936","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a new operator, <span><math><mi>S</mi></math></span>, which is closely related to the restriction problem for spheres in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, the <em>d</em>-dimensional vector space over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with <em>q</em> elements. The <span><math><mi>S</mi></math></span> operator is considered as a specific operator that maps functions on <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> to functions on <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>. We explore a relationship between the boundedness of the <span><math><mi>S</mi></math></span> operator and the restriction estimate for spheres in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>. Consequently, using this relationship, we prove that the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> restriction conjectures for spheres hold in all dimensions when the test functions are restricted to homogeneous functions of degree zero.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 1","pages":"Article 129936"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007176","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new operator, S, which is closely related to the restriction problem for spheres in Fqd, the d-dimensional vector space over the finite field Fq with q elements. The S operator is considered as a specific operator that maps functions on Fqd to functions on Fqd+1. We explore a relationship between the boundedness of the S operator and the restriction estimate for spheres in Fqd. Consequently, using this relationship, we prove that the L2 restriction conjectures for spheres hold in all dimensions when the test functions are restricted to homogeneous functions of degree zero.
有限域上球的s算子与限制估计之间的联系
本文引入了一个新的算子S,它与有限域Fq上有q个元素的d维向量空间Fqd中球的约束问题密切相关。S算子被认为是将Fqd上的函数映射到Fqd+1上的函数的特定算子。我们探讨了Fqd中S算子的有界性与球的限制估计之间的关系。因此,利用这一关系,我们证明了当测试函数被限制为0次齐次函数时,球的L2限制猜想在所有维度上都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信