Loop then task: Hybridizing OpenMP parallelism to improve load balancing and memory efficiency in continental-scale longest flow path computation

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Huidae Cho
{"title":"Loop then task: Hybridizing OpenMP parallelism to improve load balancing and memory efficiency in continental-scale longest flow path computation","authors":"Huidae Cho","doi":"10.1016/j.envsoft.2025.106630","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a new OpenMP parallel algorithm for Memory-Efficient Longest Flow Path (MELFP) computation for large-scale hydrologic analysis. MELFP hybridizes loop-based and task-based parallelism to improve load balancing and eliminates intermediate read-write matrices to optimize memory usage. Its performance remained insensitive to the threshold parameter for switching from looping to tasking. Compared to the benchmark algorithm, MELFP achieved a 66<!--> <!-->% reduction in computation time while increasing CPU utilization by 33<!--> <!-->%. Its 79<!--> <!-->% lower peak memory usage enables processing larger datasets. These results suggest that MELFP is a fast and memory-efficient solution for longest flow path computations across a large number of watersheds, particularly in high-performance computing environments where rapid execution is prioritized over lower CPU utilization. MELFP’s additional ability to compute longest flow paths for individual subwatersheds provides added benefits for detailed and localized hydrologic modeling.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106630"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003147","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new OpenMP parallel algorithm for Memory-Efficient Longest Flow Path (MELFP) computation for large-scale hydrologic analysis. MELFP hybridizes loop-based and task-based parallelism to improve load balancing and eliminates intermediate read-write matrices to optimize memory usage. Its performance remained insensitive to the threshold parameter for switching from looping to tasking. Compared to the benchmark algorithm, MELFP achieved a 66 % reduction in computation time while increasing CPU utilization by 33 %. Its 79 % lower peak memory usage enables processing larger datasets. These results suggest that MELFP is a fast and memory-efficient solution for longest flow path computations across a large number of watersheds, particularly in high-performance computing environments where rapid execution is prioritized over lower CPU utilization. MELFP’s additional ability to compute longest flow paths for individual subwatersheds provides added benefits for detailed and localized hydrologic modeling.

Abstract Image

循环然后任务:杂交OpenMP并行性,以提高大陆规模最长流路径计算的负载平衡和内存效率
本文提出了一种新的OpenMP并行算法,用于大规模水文分析的记忆高效最长流路径(MELFP)计算。MELFP混合了基于循环和基于任务的并行性以改善负载平衡,并消除了中间读写矩阵以优化内存使用。它的性能对从循环切换到任务的阈值参数不敏感。与基准算法相比,MELFP的计算时间减少了66%,而CPU利用率提高了33%。它的峰值内存使用率降低了79%,可以处理更大的数据集。这些结果表明,对于跨越大量分水岭的最长流路径计算,MELFP是一种快速且内存高效的解决方案,特别是在高性能计算环境中,快速执行优先于较低的CPU利用率。MELFP的额外功能是计算单个子流域的最长流动路径,这为详细和局部的水文建模提供了额外的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信