Half-gain observer tuning for noise reduction in discrete-time ADRC

IF 4.6 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Gernot Herbst , Arne-Jens Hempel
{"title":"Half-gain observer tuning for noise reduction in discrete-time ADRC","authors":"Gernot Herbst ,&nbsp;Arne-Jens Hempel","doi":"10.1016/j.conengprac.2025.106501","DOIUrl":null,"url":null,"abstract":"<div><div>Both the ability to suppress disturbances and the simplicity of plant modeling within the active disturbance rejection control (ADRC) approach are enabled by its observer and largely dependent on its sufficiently fast tuning. This, however, may require high observer gain values, which increase the controller’s susceptibility to measurement noise. To reduce the noise sensitivity without requiring any change to the controller structure, this article transfers the results of a continuous-time method called half-gain tuning to the discrete-time domain. Applied only to ADRC’s observer, the closed-loop dynamics will remain almost unaffected. Explicit tuning equations for the discrete-time observer gains are derived. A detailed examination performed analytically, in simulation, and in experiment reveals how much of the theoretical noise reduction promised by the continuous-time method can still be achieved in the discrete-time domain. In summary, an observer tuning method is presented that delivers a substantial reduction in noise sensitivity in practically relevant scenarios and can be applied minimally invasively to existing ADRC control loops.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"164 ","pages":"Article 106501"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125002631","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Both the ability to suppress disturbances and the simplicity of plant modeling within the active disturbance rejection control (ADRC) approach are enabled by its observer and largely dependent on its sufficiently fast tuning. This, however, may require high observer gain values, which increase the controller’s susceptibility to measurement noise. To reduce the noise sensitivity without requiring any change to the controller structure, this article transfers the results of a continuous-time method called half-gain tuning to the discrete-time domain. Applied only to ADRC’s observer, the closed-loop dynamics will remain almost unaffected. Explicit tuning equations for the discrete-time observer gains are derived. A detailed examination performed analytically, in simulation, and in experiment reveals how much of the theoretical noise reduction promised by the continuous-time method can still be achieved in the discrete-time domain. In summary, an observer tuning method is presented that delivers a substantial reduction in noise sensitivity in practically relevant scenarios and can be applied minimally invasively to existing ADRC control loops.
离散时间自抗扰器降噪的半增益观测器调谐
在自抗扰控制(ADRC)方法中,抑制干扰的能力和植物建模的简单性都是由其观测器实现的,并且在很大程度上取决于其足够快速的调谐。然而,这可能需要较高的观测器增益值,这会增加控制器对测量噪声的敏感性。为了在不改变控制器结构的情况下降低噪声灵敏度,本文将称为半增益调谐的连续时间方法的结果转移到离散时域。仅应用于自抗扰控制器观测器,闭环动力学几乎不受影响。推导了离散时间观测器增益的显式调谐方程。在分析、模拟和实验中进行的详细检查揭示了连续时间方法所承诺的理论降噪在离散时间域中仍然可以实现多少。总之,提出了一种观测器调谐方法,该方法在实际相关场景中大大降低了噪声灵敏度,并且可以微创地应用于现有的自抗扰控制器控制回路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信