Wrinkle-engineered self-dispersed MoS2/graphene hybrids for enhanced high-temperature lubrication

IF 8.2 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Guiru Du, Yujuan Zhang, Guangbin Yang, Ningning Song, Shengmao Zhang
{"title":"Wrinkle-engineered self-dispersed MoS2/graphene hybrids for enhanced high-temperature lubrication","authors":"Guiru Du, Yujuan Zhang, Guangbin Yang, Ningning Song, Shengmao Zhang","doi":"10.26599/frict.2025.9441164","DOIUrl":null,"url":null,"abstract":"<p>Self-dispersed graphene crumpled ball (GCB) demonstrates exceptional tribological performance as lubricant additive under elevated temperature. However, the critical relationship between its unique wrinkle architecture, internal porosity characteristic, and the resultant dispersion stability/friction-reduction mechanism remains insufficiently explored. Particularly, the synergistic effects arising from structural hierarchy and surface chemistry modulation in high-temperature lubrication systems require systematic investigation. Herein, we propose a wrinkle engineering strategy guided by Stokes' law to fabricate surface modifier-free GCB with programmable three-dimensional geometries. Systematic investigations reveal that the degree of wrinkling on the GCB critically dominates the dispersion characteristics and the interlayer shearing resistance. Upon the molybdenum disulfide quantum dots deposited on GCB, a more consistent and robust tribo-chemical reaction film can be formed on the friction interface and in response to protect from severe damage. This complex achieves over 2-fold enhancement in antifriction efficiency compared with commercial high-temperature chain oil (CH-27Q). Overall, this study establishes a structure-performance paradigm for developing autonomous lubrication systems under extreme thermal conditions.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"58 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Self-dispersed graphene crumpled ball (GCB) demonstrates exceptional tribological performance as lubricant additive under elevated temperature. However, the critical relationship between its unique wrinkle architecture, internal porosity characteristic, and the resultant dispersion stability/friction-reduction mechanism remains insufficiently explored. Particularly, the synergistic effects arising from structural hierarchy and surface chemistry modulation in high-temperature lubrication systems require systematic investigation. Herein, we propose a wrinkle engineering strategy guided by Stokes' law to fabricate surface modifier-free GCB with programmable three-dimensional geometries. Systematic investigations reveal that the degree of wrinkling on the GCB critically dominates the dispersion characteristics and the interlayer shearing resistance. Upon the molybdenum disulfide quantum dots deposited on GCB, a more consistent and robust tribo-chemical reaction film can be formed on the friction interface and in response to protect from severe damage. This complex achieves over 2-fold enhancement in antifriction efficiency compared with commercial high-temperature chain oil (CH-27Q). Overall, this study establishes a structure-performance paradigm for developing autonomous lubrication systems under extreme thermal conditions.

Abstract Image

皱纹工程自分散MoS2/石墨烯混合物,增强高温润滑
自分散石墨烯皱缩球(GCB)作为润滑油添加剂在高温下表现出优异的摩擦学性能。然而,其独特的皱纹结构、内部孔隙特性与由此产生的分散稳定性/减少摩擦机制之间的关键关系仍未得到充分探讨。特别是,在高温润滑系统中,由结构层次和表面化学调制引起的协同效应需要系统的研究。在此,我们提出了一种以Stokes定律为指导的皱纹工程策略来制造具有可编程三维几何形状的无表面改性剂的GCB。系统的研究表明,GCB上的起皱程度对分散特性和层间剪切性能起着至关重要的作用。在GCB上沉积二硫化钼量子点,可以在摩擦界面上形成一层更加一致和坚固的摩擦化学反应膜,以防止严重的损伤。与商用高温链油(CH-27Q)相比,该复合物的减摩效率提高了2倍以上。总的来说,本研究为开发极端热条件下的自主润滑系统建立了一个结构-性能范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信