Dynamic friction torque modelling and experimental study of ball screw actuators under high frequency reciprocating motion

IF 8.2 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yuhao Zhang, Peijuan Cui, Linxue An, Wei Pu
{"title":"Dynamic friction torque modelling and experimental study of ball screw actuators under high frequency reciprocating motion","authors":"Yuhao Zhang, Peijuan Cui, Linxue An, Wei Pu","doi":"10.26599/frict.2025.9441158","DOIUrl":null,"url":null,"abstract":"<p>The dynamic load and transient lubrication effects seriously influence the friction torque of ball screw actuators under high frequency reciprocating conditions. However, the available studies rarely consider the transient effects of rough surfaces under dynamic loads. In this paper, a dynamic friction torque model for ball screw actuators is proposed, integrating low-order finite elements with transient mixed lubrication. Dynamic contact loads are solved based on the tribo-dynamic model accounting for mechanism vibration. The lubrication, friction, and stiffness under time-varying velocities and dynamic loads are systematically analyzed. The accuracy of the model is verified by experimentally measured dynamic friction torque under high frequency reciprocation. Within the unified model, the dynamic friction behavior of ball screw actuators subjected to combined high-frequency reciprocation and complex loads are analyzed. The findings demonstrate that locating bearings exhibit superior lubrication performance compared to ball screws, primarily due to their lower sliding and spinning speeds, which result in significantly reduced friction torque. Amplitude escalation expands both the high load area and sliding/spinning speeds, thereby causing a friction torque increment. The study provides theoretical support for the dynamic performance optimization of ball screw actuators.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"32 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441158","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic load and transient lubrication effects seriously influence the friction torque of ball screw actuators under high frequency reciprocating conditions. However, the available studies rarely consider the transient effects of rough surfaces under dynamic loads. In this paper, a dynamic friction torque model for ball screw actuators is proposed, integrating low-order finite elements with transient mixed lubrication. Dynamic contact loads are solved based on the tribo-dynamic model accounting for mechanism vibration. The lubrication, friction, and stiffness under time-varying velocities and dynamic loads are systematically analyzed. The accuracy of the model is verified by experimentally measured dynamic friction torque under high frequency reciprocation. Within the unified model, the dynamic friction behavior of ball screw actuators subjected to combined high-frequency reciprocation and complex loads are analyzed. The findings demonstrate that locating bearings exhibit superior lubrication performance compared to ball screws, primarily due to their lower sliding and spinning speeds, which result in significantly reduced friction torque. Amplitude escalation expands both the high load area and sliding/spinning speeds, thereby causing a friction torque increment. The study provides theoretical support for the dynamic performance optimization of ball screw actuators.

Abstract Image

高频往复运动下滚珠丝杠执行机构动态摩擦力矩建模与实验研究
在高频往复工况下,动载荷和瞬态润滑效应严重影响滚珠丝杠执行机构的摩擦力矩。然而,现有的研究很少考虑动载荷作用下粗糙表面的瞬态效应。建立了考虑瞬态混合润滑的滚珠丝杠执行机构低阶有限元动态摩擦力矩模型。基于考虑机构振动的摩擦动力学模型求解动态接触载荷。系统地分析了时变速度和动载荷作用下的润滑、摩擦和刚度。通过高频往复运动下动态摩擦力矩的实测,验证了模型的准确性。在统一模型中,分析了高频率往复和复杂载荷联合作用下滚珠丝杠执行机构的动态摩擦行为。研究结果表明,与滚珠丝杠相比,定位轴承表现出更好的润滑性能,主要是因为它们的滑动和旋转速度更低,从而显著降低了摩擦扭矩。振幅的增加扩大了高负载区域和滑动/旋转速度,从而导致摩擦扭矩的增加。该研究为滚珠丝杠执行机构的动态性能优化提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信