Marine Le Blay, Joshua H. K. Saldi, Alexandre Morin
{"title":"Control of collective activity to crystallize an oscillator gas","authors":"Marine Le Blay, Joshua H. K. Saldi, Alexandre Morin","doi":"10.1038/s41567-025-02957-y","DOIUrl":null,"url":null,"abstract":"Motility-induced phase separation occurs in assemblies of self-propelled units when activity is coupled negatively to density. By contrast, the consequences of a positive coupling between density and activity on the collective behaviour of active matter remain unexplored. Here we show that collective activity can emerge from such a positive coupling among non-motile building blocks. We perform experiments with self-sustained oscillators powered by contact-charge electrophoresis. Although the oscillators are non-motile by design, they spontaneously form an active gas when confined together. The super-elastic nature of collisions constitutes a positive density–activity coupling and underlies the active gas properties. Elucidating the origin of binary collisions allows us to precisely control the structure of the active gas and its eventual crystallization. Beyond considering the overlooked positive coupling between density and activity, our work suggests that rich collective properties can emerge not only from the symmetry of interactions between active building blocks but also from their adaptable and responsive behaviour. In active matter systems, increasing density usually reduces activity. Now, in a system where density enhances activity, collective motion is shown to arise from non-motile oscillators when they are confined.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 9","pages":"1412-1419"},"PeriodicalIF":18.4000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02957-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motility-induced phase separation occurs in assemblies of self-propelled units when activity is coupled negatively to density. By contrast, the consequences of a positive coupling between density and activity on the collective behaviour of active matter remain unexplored. Here we show that collective activity can emerge from such a positive coupling among non-motile building blocks. We perform experiments with self-sustained oscillators powered by contact-charge electrophoresis. Although the oscillators are non-motile by design, they spontaneously form an active gas when confined together. The super-elastic nature of collisions constitutes a positive density–activity coupling and underlies the active gas properties. Elucidating the origin of binary collisions allows us to precisely control the structure of the active gas and its eventual crystallization. Beyond considering the overlooked positive coupling between density and activity, our work suggests that rich collective properties can emerge not only from the symmetry of interactions between active building blocks but also from their adaptable and responsive behaviour. In active matter systems, increasing density usually reduces activity. Now, in a system where density enhances activity, collective motion is shown to arise from non-motile oscillators when they are confined.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.