Nan Wang, Boqi Zhang, Juan J. Loor, Chunjin Li, Xu Zhou
{"title":"Extracellular vesicles in dairy cattle: research progress and prospects for practical applications","authors":"Nan Wang, Boqi Zhang, Juan J. Loor, Chunjin Li, Xu Zhou","doi":"10.1186/s40104-025-01242-5","DOIUrl":null,"url":null,"abstract":"Intensive dairying has diminished infectious disease resistance in dairy cattle and increased the risk of disorders affecting milk quality and productive life. Development of novel health monitoring technologies, optimization of disease treatment protocols using novel biomarkers, and development of antibiotic substitutes are necessary to further enhance the productivity of dairy cattle. Extracellular vesicles (EVs) are key mediators of cellular communication and are essential for maintaining intracellular homeostasis and regulating various physiological and pathological processes. Establishing a network of mechanisms by which EVs regulate physiological processes in dairy cattle will contribute to the development of new technologies for early disease diagnosis and disease treatment. This review summarizes the molecular characterization and advances in the study of EVs in dairy cattle and focuses on the reported mechanisms of action. Prospects and limitations for the application of EVs in monitoring health status, disease treatment and assisted reproduction are discussed.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"110"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01242-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Intensive dairying has diminished infectious disease resistance in dairy cattle and increased the risk of disorders affecting milk quality and productive life. Development of novel health monitoring technologies, optimization of disease treatment protocols using novel biomarkers, and development of antibiotic substitutes are necessary to further enhance the productivity of dairy cattle. Extracellular vesicles (EVs) are key mediators of cellular communication and are essential for maintaining intracellular homeostasis and regulating various physiological and pathological processes. Establishing a network of mechanisms by which EVs regulate physiological processes in dairy cattle will contribute to the development of new technologies for early disease diagnosis and disease treatment. This review summarizes the molecular characterization and advances in the study of EVs in dairy cattle and focuses on the reported mechanisms of action. Prospects and limitations for the application of EVs in monitoring health status, disease treatment and assisted reproduction are discussed.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.