Single-Atom Enzymes: From Evolutionary Insights, Precision Engineering to Breakthroughs in Biomedical Applications

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-03 DOI:10.1002/smll.202505750
Ye Xu, Chuhuang Dong, Xueliang Liu, Dali Wei, Zhejie Chen, Huayuan Zhou, Jia-bei Li, Yu Yang, Weihong Tan
{"title":"Single-Atom Enzymes: From Evolutionary Insights, Precision Engineering to Breakthroughs in Biomedical Applications","authors":"Ye Xu,&nbsp;Chuhuang Dong,&nbsp;Xueliang Liu,&nbsp;Dali Wei,&nbsp;Zhejie Chen,&nbsp;Huayuan Zhou,&nbsp;Jia-bei Li,&nbsp;Yu Yang,&nbsp;Weihong Tan","doi":"10.1002/smll.202505750","DOIUrl":null,"url":null,"abstract":"<p>Single-atom enzymes (SAEs), integrating the catalytic efficiency of single-atom catalysts with enzymatic functions, represent a paradigm shift in biomedicine. Comprising natural enzymes, mimic enzymes, and single-atom nanozymes, SAEs leverage isolated metal atoms as catalytic centers. Natural enzymes, evolved over billions of years, feature monoatomic active sites for precise biocatalysis under physiological conditions. Mimic enzymes (e.g., DNAzymes) represent a biomimetic adaptation, replicating natural active sites via programmable molecular scaffolds to enhance stability while inheriting an evolutionary bias that prioritizes structural robustness over catalytic diversity, limiting multifunctionality. In contrast, nanozymes embody an evolutionary leap: they sacrifice partial biocompatibility to achieve multienzyme-mimicking capabilities and scalable production through inorganic nanomaterial engineering, thereby expanding the catalytic landscape beyond biological boundaries, though this advancement introduces concomitant immunogenicity challenges. This review systematically examines cutting-edge advances in SAE applications across biomedical domains including biosensing, oncotherapy, antimicrobial strategies, and oxidative stress management. This review particularly presents a critical analysis of current challenges and emerging opportunities, proposing rational design principles for next-generation SAEs with enhanced multifunctionality. By elucidating fundamental design strategies and translational potential, this work aims to accelerate the development of precision catalytic platforms for modern biomedicine.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 37","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202505750","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom enzymes (SAEs), integrating the catalytic efficiency of single-atom catalysts with enzymatic functions, represent a paradigm shift in biomedicine. Comprising natural enzymes, mimic enzymes, and single-atom nanozymes, SAEs leverage isolated metal atoms as catalytic centers. Natural enzymes, evolved over billions of years, feature monoatomic active sites for precise biocatalysis under physiological conditions. Mimic enzymes (e.g., DNAzymes) represent a biomimetic adaptation, replicating natural active sites via programmable molecular scaffolds to enhance stability while inheriting an evolutionary bias that prioritizes structural robustness over catalytic diversity, limiting multifunctionality. In contrast, nanozymes embody an evolutionary leap: they sacrifice partial biocompatibility to achieve multienzyme-mimicking capabilities and scalable production through inorganic nanomaterial engineering, thereby expanding the catalytic landscape beyond biological boundaries, though this advancement introduces concomitant immunogenicity challenges. This review systematically examines cutting-edge advances in SAE applications across biomedical domains including biosensing, oncotherapy, antimicrobial strategies, and oxidative stress management. This review particularly presents a critical analysis of current challenges and emerging opportunities, proposing rational design principles for next-generation SAEs with enhanced multifunctionality. By elucidating fundamental design strategies and translational potential, this work aims to accelerate the development of precision catalytic platforms for modern biomedicine.

Abstract Image

单原子酶:从进化的见解,精密工程到生物医学应用的突破。
单原子酶(SAEs)将单原子催化剂的催化效率与酶的功能结合起来,代表了生物医学领域的范式转变。SAEs由天然酶、模拟酶和单原子纳米酶组成,利用分离的金属原子作为催化中心。经过数十亿年的进化,天然酶具有单原子活性位点,可在生理条件下进行精确的生物催化。模拟酶(如DNAzymes)代表了一种仿生适应,通过可编程分子支架复制天然活性位点以增强稳定性,同时继承了优先考虑结构稳健性而不是催化多样性的进化偏见,限制了多功能性。相比之下,纳米酶体现了一种进化飞跃:它们牺牲了部分生物相容性,通过无机纳米材料工程实现了多酶模拟能力和可扩展的生产,从而扩大了催化领域,超越了生物界限,尽管这种进步带来了伴随的免疫原性挑战。这篇综述系统地研究了SAE在生物医学领域应用的最新进展,包括生物传感、肿瘤治疗、抗菌策略和氧化应激管理。这篇综述对当前的挑战和新出现的机遇进行了批判性分析,提出了具有增强多功能的下一代sae的合理设计原则。通过阐明基本设计策略和转化潜力,本工作旨在加速现代生物医学精密催化平台的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信