Lena Bräunig, Stefan Buske, Richard Kramer, Alireza Malehmir, Christopher Juhlin, Paul Marsden
{"title":"Multiscale Borehole Seismic Imaging for Mineral Exploration in the Blötberget Mining Area (Central Sweden, Ludvika)","authors":"Lena Bräunig, Stefan Buske, Richard Kramer, Alireza Malehmir, Christopher Juhlin, Paul Marsden","doi":"10.1111/1365-2478.70061","DOIUrl":null,"url":null,"abstract":"<p>Borehole seismic investigations play a major role for high-resolution imaging of geological structures at depth. The resulting borehole seismic data enable a direct characterisation of the target units as well as their physical properties along the well and in its direct vicinity. Analysing seismic data acquired at different scales within the borehole provides additional notable insights and allows an improved geological and petrophysical interpretation. In our work, we processed zero offset vertical seismic profiling data and full waveform sonic log data as part of a multiscale borehole seismic imaging workflow to better characterise a mineral exploration target at Ludvika Mines (Blötberget mining area, Central Sweden). Data processing mainly comprised wavefield separation and corridor stacking, followed by migration of the full waveform sonic log data using a diffraction stack approach. Additional borehole data, that is, impedance logs and a lithological borehole profile, were used for the integrated interpretation to provide the basis for an assignment of the reflectors to a specific lithological unit. Besides the existing structural models derived from surface seismic investigations, the new images from borehole seismic data reveal the internal structure of the mineralisation at a significantly higher resolution, complement the geophysical characterisation and can be used for a subsequent reliable mineral resource estimate.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70061","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Borehole seismic investigations play a major role for high-resolution imaging of geological structures at depth. The resulting borehole seismic data enable a direct characterisation of the target units as well as their physical properties along the well and in its direct vicinity. Analysing seismic data acquired at different scales within the borehole provides additional notable insights and allows an improved geological and petrophysical interpretation. In our work, we processed zero offset vertical seismic profiling data and full waveform sonic log data as part of a multiscale borehole seismic imaging workflow to better characterise a mineral exploration target at Ludvika Mines (Blötberget mining area, Central Sweden). Data processing mainly comprised wavefield separation and corridor stacking, followed by migration of the full waveform sonic log data using a diffraction stack approach. Additional borehole data, that is, impedance logs and a lithological borehole profile, were used for the integrated interpretation to provide the basis for an assignment of the reflectors to a specific lithological unit. Besides the existing structural models derived from surface seismic investigations, the new images from borehole seismic data reveal the internal structure of the mineralisation at a significantly higher resolution, complement the geophysical characterisation and can be used for a subsequent reliable mineral resource estimate.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.