In-situ fabrication and biofunctional evaluation of a ZIF-67/Fe₃O₄-integrated xanthan gum–cellulose nanocomposite for antibacterial, Cytocompatibility, and hemocompatibility applications

IF 8.5 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Saman Niknamfar , Erfan Shapourgan , Neda Saffarian-Tousi
{"title":"In-situ fabrication and biofunctional evaluation of a ZIF-67/Fe₃O₄-integrated xanthan gum–cellulose nanocomposite for antibacterial, Cytocompatibility, and hemocompatibility applications","authors":"Saman Niknamfar ,&nbsp;Erfan Shapourgan ,&nbsp;Neda Saffarian-Tousi","doi":"10.1016/j.ijbiomac.2025.146526","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study presents the in-situ fabrication and biological evaluation of a ZIF-67/Fe₃O₄-integrated xanthan gum-cellulose (XG-Cell) nanocomposite, designed for biomedical applications that demand strong antibacterial activity, high cytocompatibility, and minimal hemolytic activity.</div></div><div><h3>Methodology</h3><div>The XG-Cell/ZIF-67/Fe₃O₄ nanocomposite was synthesized through a three-step process: (1) crosslinking of xanthan gum and cellulose (XG-Cell), (2) ZIF-67 integration into the hydrogel matrix, and (3) in-situ Fe₃O₄ nanoparticle synthesis. The material was characterized using XRD, FTIR, FESEM, EDX, TGA, and VSM. Biological assessments included cytocompatibility (MTT assay), hemocompatibility (hemolysis assay), and antibacterial efficacy (<em>P. aeruginosa</em>).</div></div><div><h3>Findings</h3><div>The nanocomposite exhibited uniform nanoscale morphology (60–80 nm), superparamagnetic behavior (24.38 emu/g), and high thermal stability. Cytocompatibility tests confirmed over 95 % viability in HEK293T cells, and hemolysis remained below 2 %, meeting ISO 10993-5:1992 standards. The material demonstrated significant antibacterial activity, inhibiting biofilm formation by 75 % compared to polystyrene.</div></div><div><h3>Originality</h3><div>Unlike previous reports that incorporate either ZIF-67 or Fe₃O₄ independently, this study presents a unique nanocomposite that integrates both components within a xanthan gum–cellulose hydrogel matrix via stepwise synthesis. This design enables synergistic enhancement of antibacterial, cytocompatible, and hemocompatible properties, making it a promising candidate for biomedical applications such as wound healing, drug delivery systems, and antibacterial coatings.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"321 ","pages":"Article 146526"},"PeriodicalIF":8.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025070837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study presents the in-situ fabrication and biological evaluation of a ZIF-67/Fe₃O₄-integrated xanthan gum-cellulose (XG-Cell) nanocomposite, designed for biomedical applications that demand strong antibacterial activity, high cytocompatibility, and minimal hemolytic activity.

Methodology

The XG-Cell/ZIF-67/Fe₃O₄ nanocomposite was synthesized through a three-step process: (1) crosslinking of xanthan gum and cellulose (XG-Cell), (2) ZIF-67 integration into the hydrogel matrix, and (3) in-situ Fe₃O₄ nanoparticle synthesis. The material was characterized using XRD, FTIR, FESEM, EDX, TGA, and VSM. Biological assessments included cytocompatibility (MTT assay), hemocompatibility (hemolysis assay), and antibacterial efficacy (P. aeruginosa).

Findings

The nanocomposite exhibited uniform nanoscale morphology (60–80 nm), superparamagnetic behavior (24.38 emu/g), and high thermal stability. Cytocompatibility tests confirmed over 95 % viability in HEK293T cells, and hemolysis remained below 2 %, meeting ISO 10993-5:1992 standards. The material demonstrated significant antibacterial activity, inhibiting biofilm formation by 75 % compared to polystyrene.

Originality

Unlike previous reports that incorporate either ZIF-67 or Fe₃O₄ independently, this study presents a unique nanocomposite that integrates both components within a xanthan gum–cellulose hydrogel matrix via stepwise synthesis. This design enables synergistic enhancement of antibacterial, cytocompatible, and hemocompatible properties, making it a promising candidate for biomedical applications such as wound healing, drug delivery systems, and antibacterial coatings.
ZIF-67/Fe₃O₄-整合黄原胶-纤维素纳米复合材料的原位制备和生物功能评价,用于抗菌、细胞相容性和血液相容性
目的研究了原位制备ZIF-67/Fe₃O₄-整合黄原胶-纤维素(XG-Cell)纳米复合材料并对其进行了生物学评价,该复合材料设计用于生物医学领域,要求具有强抗菌活性、高细胞相容性和最小溶血活性。方法采用3个步骤合成XG-Cell/ZIF-67/Fe₃O₄纳米复合材料:(1)黄原胶与纤维素交联(XG-Cell),(2)将ZIF-67整合到水凝胶基质中,(3)原位合成Fe₃O₄纳米颗粒。采用XRD、FTIR、FESEM、EDX、TGA和VSM对材料进行了表征。生物学评估包括细胞相容性(MTT试验)、血液相容性(溶血试验)和抗菌效果(铜绿假单胞菌)。该纳米复合材料具有均匀的纳米形貌(60 ~ 80 nm)、超顺磁性(24.38 emu/g)和高热稳定性。细胞相容性测试证实HEK293T细胞存活率超过95%,溶血率保持在2%以下,符合ISO 10993- 5:20 92标准。与聚苯乙烯相比,该材料具有显著的抗菌活性,可抑制生物膜形成75%。不同于之前的报道,单独加入ZIF-67或Fe₃O₄,这项研究提出了一种独特的纳米复合材料,通过逐步合成将这两种成分整合在黄原胶-纤维素水凝胶基质中。这种设计能够协同增强抗菌、细胞相容性和血液相容性,使其成为生物医学应用的有希望的候选者,如伤口愈合、药物输送系统和抗菌涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信