Mehmet Yilmaz , Mehmet Yaman , Fatma Yildirim , Samsoor Nuhzat , Sakir Aydogan
{"title":"A self-powered and cost-effective rGO/n-Si photodetector with broad spectral response including visible, UV, and near-IR regions","authors":"Mehmet Yilmaz , Mehmet Yaman , Fatma Yildirim , Samsoor Nuhzat , Sakir Aydogan","doi":"10.1016/j.mseb.2025.118659","DOIUrl":null,"url":null,"abstract":"<div><div>Schottky-type photodetectors are considered an attractive research focus by researchers due to their simple fabrication process and fast response time. However, optimization of the Schottky barrier height is still considered a major challenge, which is being investigated to improve device performance for visible light sensing applications. The study aims to fabricate a reduced graphene oxide/silicon (rGO/n-Si) Schottky photodetector optimized for high-performance visible light sensing and characterize the diode parameters. The fabricated device exhibited a high ON/OFF ratio of 10<sup>3</sup>, a detection of 5.21 × 10<sup>11</sup> Jones (D<sup>∗</sup>) and a responsivity of 700 mA/W (<em>R</em>) under 590 nm illumination. The instrument also demonstrated excellent spectral sensitivity in the UV range with high external quantum efficiency (EQE) exceeding 200 % at 365 nm. The obtained results have demonstrated the potential of rGO as a tunable interfacial material to obtain optimized Schottky junctions in optoelectronic applications and are thought to be instructive for other researchers.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"322 ","pages":"Article 118659"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072500683X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Schottky-type photodetectors are considered an attractive research focus by researchers due to their simple fabrication process and fast response time. However, optimization of the Schottky barrier height is still considered a major challenge, which is being investigated to improve device performance for visible light sensing applications. The study aims to fabricate a reduced graphene oxide/silicon (rGO/n-Si) Schottky photodetector optimized for high-performance visible light sensing and characterize the diode parameters. The fabricated device exhibited a high ON/OFF ratio of 103, a detection of 5.21 × 1011 Jones (D∗) and a responsivity of 700 mA/W (R) under 590 nm illumination. The instrument also demonstrated excellent spectral sensitivity in the UV range with high external quantum efficiency (EQE) exceeding 200 % at 365 nm. The obtained results have demonstrated the potential of rGO as a tunable interfacial material to obtain optimized Schottky junctions in optoelectronic applications and are thought to be instructive for other researchers.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.