The planar Turán number of Θ6-graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
David Guan, Ervin Győri, Diep Luong-Le, Felicia Wang, Mengyuan Yang
{"title":"The planar Turán number of Θ6-graphs","authors":"David Guan,&nbsp;Ervin Győri,&nbsp;Diep Luong-Le,&nbsp;Felicia Wang,&nbsp;Mengyuan Yang","doi":"10.1016/j.disc.2025.114709","DOIUrl":null,"url":null,"abstract":"<div><div>There are two particular <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>-graphs - the 6-cycle graphs with a diagonal. We find the planar Turán number of each of them, i.e. the maximum number of edges in a planar graph <em>G</em> of <em>n</em> vertices not containing the given <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> as a subgraph, and we find extremal constructions showing the sharpness of these results - apart from a small additive constant error in one of the cases.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114709"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003176","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

There are two particular Θ6-graphs - the 6-cycle graphs with a diagonal. We find the planar Turán number of each of them, i.e. the maximum number of edges in a planar graph G of n vertices not containing the given Θ6 as a subgraph, and we find extremal constructions showing the sharpness of these results - apart from a small additive constant error in one of the cases.
Θ6-graphs的平面Turán号
有两种特别的Θ6-graphs -有对角线的6循环图。我们找到了它们中的每一个的平面Turán数量,即在不包含给定Θ6作为子图的n个顶点的平面图G中的最大边数,并且我们找到了显示这些结果的锐度的极值结构-除了其中一种情况下的小附加常数误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信