An interpretable deep learning framework for medical diagnosis using spectrogram analysis

Shagufta Henna , Juan Miguel Lopez Alcaraz , Upaka Rathnayake , Mohamed Amjath
{"title":"An interpretable deep learning framework for medical diagnosis using spectrogram analysis","authors":"Shagufta Henna ,&nbsp;Juan Miguel Lopez Alcaraz ,&nbsp;Upaka Rathnayake ,&nbsp;Mohamed Amjath","doi":"10.1016/j.health.2025.100408","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional Neural Networks (CNNs) are widely utilized for their robust feature extraction capabilities, particularly in medical classification tasks. However, their opaque decision-making process presents challenges in clinical settings, where interpretability and trust are paramount. This study investigates the explainability of a custom CNN model developed for Covid-19 and non-Covid-19 classification using dry cough spectrograms, with a focus on interpreting filter-level representations and decision pathways. To improve model transparency, we apply a suite of explainable artificial intelligence (XAI) techniques, including feature visualizations, SmoothGrad, Grad-CAM, and LIME, which explain the relevance of spectro-temporal features in the classification process. Furthermore, we conduct a comparative analysis with a pre-trained MobileNetV2 model using Guided Grad-CAM and Integrated Gradients. The results indicate that while MobileNetV2 yields some degree of visual attribution, its explanations, particularly for Covid-19 predictions are diffuse and inconsistent, limiting their interpretability. In contrast, the custom CNN model exhibits more coherent and class-specific activation patterns, offering improved localization of diagnostically relevant features.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100408"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNNs) are widely utilized for their robust feature extraction capabilities, particularly in medical classification tasks. However, their opaque decision-making process presents challenges in clinical settings, where interpretability and trust are paramount. This study investigates the explainability of a custom CNN model developed for Covid-19 and non-Covid-19 classification using dry cough spectrograms, with a focus on interpreting filter-level representations and decision pathways. To improve model transparency, we apply a suite of explainable artificial intelligence (XAI) techniques, including feature visualizations, SmoothGrad, Grad-CAM, and LIME, which explain the relevance of spectro-temporal features in the classification process. Furthermore, we conduct a comparative analysis with a pre-trained MobileNetV2 model using Guided Grad-CAM and Integrated Gradients. The results indicate that while MobileNetV2 yields some degree of visual attribution, its explanations, particularly for Covid-19 predictions are diffuse and inconsistent, limiting their interpretability. In contrast, the custom CNN model exhibits more coherent and class-specific activation patterns, offering improved localization of diagnostically relevant features.
一个可解释的深度学习框架,用于使用谱图分析的医学诊断
卷积神经网络(cnn)因其强大的特征提取能力而被广泛应用,特别是在医学分类任务中。然而,他们不透明的决策过程在临床环境中提出了挑战,其中可解释性和信任是至关重要的。本研究研究了使用干咳谱图为Covid-19和非Covid-19分类开发的自定义CNN模型的可解释性,重点是解释过滤器级表示和决策途径。为了提高模型的透明度,我们应用了一套可解释的人工智能(XAI)技术,包括特征可视化、SmoothGrad、Grad-CAM和LIME,这些技术解释了光谱-时间特征在分类过程中的相关性。此外,我们使用Guided Grad-CAM和Integrated Gradients与预训练的MobileNetV2模型进行了比较分析。结果表明,虽然MobileNetV2产生了一定程度的视觉归因,但其解释,特别是对Covid-19的预测是分散和不一致的,限制了它们的可解释性。相比之下,自定义CNN模型显示出更连贯和特定类别的激活模式,提供了诊断相关特征的改进定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信