Shagufta Henna , Juan Miguel Lopez Alcaraz , Upaka Rathnayake , Mohamed Amjath
{"title":"An interpretable deep learning framework for medical diagnosis using spectrogram analysis","authors":"Shagufta Henna , Juan Miguel Lopez Alcaraz , Upaka Rathnayake , Mohamed Amjath","doi":"10.1016/j.health.2025.100408","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional Neural Networks (CNNs) are widely utilized for their robust feature extraction capabilities, particularly in medical classification tasks. However, their opaque decision-making process presents challenges in clinical settings, where interpretability and trust are paramount. This study investigates the explainability of a custom CNN model developed for Covid-19 and non-Covid-19 classification using dry cough spectrograms, with a focus on interpreting filter-level representations and decision pathways. To improve model transparency, we apply a suite of explainable artificial intelligence (XAI) techniques, including feature visualizations, SmoothGrad, Grad-CAM, and LIME, which explain the relevance of spectro-temporal features in the classification process. Furthermore, we conduct a comparative analysis with a pre-trained MobileNetV2 model using Guided Grad-CAM and Integrated Gradients. The results indicate that while MobileNetV2 yields some degree of visual attribution, its explanations, particularly for Covid-19 predictions are diffuse and inconsistent, limiting their interpretability. In contrast, the custom CNN model exhibits more coherent and class-specific activation patterns, offering improved localization of diagnostically relevant features.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100408"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional Neural Networks (CNNs) are widely utilized for their robust feature extraction capabilities, particularly in medical classification tasks. However, their opaque decision-making process presents challenges in clinical settings, where interpretability and trust are paramount. This study investigates the explainability of a custom CNN model developed for Covid-19 and non-Covid-19 classification using dry cough spectrograms, with a focus on interpreting filter-level representations and decision pathways. To improve model transparency, we apply a suite of explainable artificial intelligence (XAI) techniques, including feature visualizations, SmoothGrad, Grad-CAM, and LIME, which explain the relevance of spectro-temporal features in the classification process. Furthermore, we conduct a comparative analysis with a pre-trained MobileNetV2 model using Guided Grad-CAM and Integrated Gradients. The results indicate that while MobileNetV2 yields some degree of visual attribution, its explanations, particularly for Covid-19 predictions are diffuse and inconsistent, limiting their interpretability. In contrast, the custom CNN model exhibits more coherent and class-specific activation patterns, offering improved localization of diagnostically relevant features.