{"title":"Influence of variable molecular diameters on vibrational–electronic state-specific transport coefficients","authors":"Istomin V.A., Kustova E.V.","doi":"10.1016/j.chemphys.2025.112863","DOIUrl":null,"url":null,"abstract":"<div><div>Detailed vibrational–electronic and simplified electronic state-to-state approaches for transport properties of non-equilibrium high-temperature flows are developed using the generalized Chapman–Enskog method. The algorithm for the transport coefficients calculation takes into account variable collision diameters of excited species. Effective diameters of atoms and molecules in different electronic and vibrational states are evaluated using the Slater, Hirschfelder and Tietz-Hua models; the latter two models yield similar results for molecules at the ground electronic state. At temperatures above 10000 K, a noticeable effect of increasing collision diameters on the state-specific transport coefficients is found, especially in case of non-equilibrium distributions over internal states.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"599 ","pages":"Article 112863"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002642","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detailed vibrational–electronic and simplified electronic state-to-state approaches for transport properties of non-equilibrium high-temperature flows are developed using the generalized Chapman–Enskog method. The algorithm for the transport coefficients calculation takes into account variable collision diameters of excited species. Effective diameters of atoms and molecules in different electronic and vibrational states are evaluated using the Slater, Hirschfelder and Tietz-Hua models; the latter two models yield similar results for molecules at the ground electronic state. At temperatures above 10000 K, a noticeable effect of increasing collision diameters on the state-specific transport coefficients is found, especially in case of non-equilibrium distributions over internal states.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.