Nonlinear Dynamics and Stability Analysis of a Pandemic Model Using Homotopy Perturbation.

Garima Agarwal, Man Mohan Singh, Rashid Jan, Sunil Dutt Purohit
{"title":"Nonlinear Dynamics and Stability Analysis of a Pandemic Model Using Homotopy Perturbation.","authors":"Garima Agarwal, Man Mohan Singh, Rashid Jan, Sunil Dutt Purohit","doi":"10.1615/CritRevBiomedEng.2025055055","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we gave the numerical solution of the various population categories of susceptible, exposed, infected, and recovered (SEIR) mathematical models by using homotopy perturbation method, which is a technique that combines the perturbation and homotopy methods to solve nonlinear problems. Also, we discuss the susceptible population category and explore the graphical solution of all populations (SEIR) using the parameters α and β for both fractional and integer order. In the end, the stability analysis is also shown in the population graphs.</p>","PeriodicalId":94308,"journal":{"name":"Critical reviews in biomedical engineering","volume":"53 3","pages":"13-21"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2025055055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we gave the numerical solution of the various population categories of susceptible, exposed, infected, and recovered (SEIR) mathematical models by using homotopy perturbation method, which is a technique that combines the perturbation and homotopy methods to solve nonlinear problems. Also, we discuss the susceptible population category and explore the graphical solution of all populations (SEIR) using the parameters α and β for both fractional and integer order. In the end, the stability analysis is also shown in the population graphs.

基于同伦摄动的流行病模型的非线性动力学与稳定性分析。
本文利用同伦摄动方法,给出了不同种群类别的易感、暴露、感染和恢复(SEIR)数学模型的数值解,这是一种将摄动和同伦方法结合起来求解非线性问题的技术。此外,我们还讨论了易感群体的类别,并探讨了所有群体(SEIR)的图形解,在分数阶和整数阶下使用参数α和β。最后,在总体图中也显示了稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信