{"title":"In-silico prioritization of pathogenic Interleukin-37b variants and a fusion platform for high-yield soluble production.","authors":"Sana Tahir, Jannat Rahim, Saima Sadaf","doi":"10.1016/j.biochi.2025.07.026","DOIUrl":null,"url":null,"abstract":"<p><p>Human interleukin-37 isoform 1 (IL-37b) is a key anti-inflammatory cytokine with significant therapeutic potential for inflammatory and immune-mediated disorders. However, its clinical translation is limited by poor understanding of disease-associated genetic variants and lack of an expression system for soluble production. While addressing both challenges, this study presents (a) a prioritized catalog of high-confidence, pathogenic IL-37b variants, and (b) a fusion-based expression platform for its soluble production, providing essential resources for future functional validations. Screening of over 3000 IL-37b variants using various computational tools and multi-algorithm consensus approach identified 25 potentially pathogenic non-synonymous single nucleotide variants (nsSNVs). Amongst these, 16 variants (e.g., D64 V/N, L72R, L111Q, V113F, C122R, F154S, I155 N, Y157C, E168G, G174A, I111T) were predicted to significantly destabilize IL-37b's structure and impair its interaction with the IL-18 receptor. Further, guided by complementary in-silico predictions, an aspartate-rich lunasin peptide yielded the highest soluble expression, constituting ∼40 % of total E. coli cellular proteins. The fusion expression system achieved ∼80 % solubility (compared to <10 % for wild-type IL-37b) and a yield of 167 mg/L following Ni<sup>2+</sup>-affinity purification under optimized conditions (25 °C, lactose autoinduction). The findings underscore the significance of complementary computational workflows in establishing an end-to-end pipeline for variant-to-solution analysis of IL-37b - a dual foundation linking in silico discovery to therapeutic development.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2025.07.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human interleukin-37 isoform 1 (IL-37b) is a key anti-inflammatory cytokine with significant therapeutic potential for inflammatory and immune-mediated disorders. However, its clinical translation is limited by poor understanding of disease-associated genetic variants and lack of an expression system for soluble production. While addressing both challenges, this study presents (a) a prioritized catalog of high-confidence, pathogenic IL-37b variants, and (b) a fusion-based expression platform for its soluble production, providing essential resources for future functional validations. Screening of over 3000 IL-37b variants using various computational tools and multi-algorithm consensus approach identified 25 potentially pathogenic non-synonymous single nucleotide variants (nsSNVs). Amongst these, 16 variants (e.g., D64 V/N, L72R, L111Q, V113F, C122R, F154S, I155 N, Y157C, E168G, G174A, I111T) were predicted to significantly destabilize IL-37b's structure and impair its interaction with the IL-18 receptor. Further, guided by complementary in-silico predictions, an aspartate-rich lunasin peptide yielded the highest soluble expression, constituting ∼40 % of total E. coli cellular proteins. The fusion expression system achieved ∼80 % solubility (compared to <10 % for wild-type IL-37b) and a yield of 167 mg/L following Ni2+-affinity purification under optimized conditions (25 °C, lactose autoinduction). The findings underscore the significance of complementary computational workflows in establishing an end-to-end pipeline for variant-to-solution analysis of IL-37b - a dual foundation linking in silico discovery to therapeutic development.