Synergistic H&E and IHC image analysis by AI predicts cancer biomarkers and survival outcomes in colorectal and breast cancer.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yating Cheng, Norsang Lama, Ming Chen, Eghbal Amidi, Mohammadreza Ramzanpour, Md Ashequr Rahman, Joanne Xiu, Anthony Helmstetter, Lauren Dickman, Jennifer R Ribeiro, Hassan Ghani, Matthew Oberley, David Spetzler, George W Sledge
{"title":"Synergistic H&E and IHC image analysis by AI predicts cancer biomarkers and survival outcomes in colorectal and breast cancer.","authors":"Yating Cheng, Norsang Lama, Ming Chen, Eghbal Amidi, Mohammadreza Ramzanpour, Md Ashequr Rahman, Joanne Xiu, Anthony Helmstetter, Lauren Dickman, Jennifer R Ribeiro, Hassan Ghani, Matthew Oberley, David Spetzler, George W Sledge","doi":"10.1038/s43856-025-01045-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in immunotherapy, particularly pembrolizumab, have shown promising results in treating metastatic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). Accurate detection of predictive biomarkers, such as microsatellite instability (MSI)/mismatch repair deficiency (MMRd) and programmed death-ligand 1 (PD-L1), is key to efficacy of these treatments. Traditional methods like immunohistochemistry (IHC) and next-generation sequencing are effective but are labor intensive and require subjective interpretation.</p><p><strong>Methods: </strong>We developed a dual-modality transformer-based model for predicting MSI/MMRd and PD-L1 status using hematoxylin & eosin and IHC stained whole slide images. We evaluated the model using area under the receiver operating curve (AUROC). Time-on-treatment (TOT) and overall survival (OS) were derived from insurance claims and analyzed by Kaplan-Meier method. Hazard ratios (HR) were determined using the Cox proportional hazard model.</p><p><strong>Results: </strong>Our AI framework achieves clinical-grade performance, with AUROC exceeding 0.97 for MSI/MMRd prediction in CRC and 0.96 for PD-L1 prediction in breast cancer. Patients with biomarker-positive model predictions demonstrated prolonged TOT and OS when treated with pembrolizumab. For breast cancer patients, the model's predictions were superior to PD-L1 IHC in stratifying patients with improved outcomes on pembrolizumab, suggesting a reevaluation of existing PD-L1 status thresholds.</p><p><strong>Conclusions: </strong>This study promotes the integration of advanced AI tools in clinical pathology, aiming to enhance the precision and efficiency of cancer biomarker evaluation and offering a customizable framework for varied clinical scenarios. Our model enhances predictive accuracy, integrating features from both staining methods, and exhibits superior prognostic precision compared to current biomarker assessments.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"328"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01045-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent advancements in immunotherapy, particularly pembrolizumab, have shown promising results in treating metastatic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). Accurate detection of predictive biomarkers, such as microsatellite instability (MSI)/mismatch repair deficiency (MMRd) and programmed death-ligand 1 (PD-L1), is key to efficacy of these treatments. Traditional methods like immunohistochemistry (IHC) and next-generation sequencing are effective but are labor intensive and require subjective interpretation.

Methods: We developed a dual-modality transformer-based model for predicting MSI/MMRd and PD-L1 status using hematoxylin & eosin and IHC stained whole slide images. We evaluated the model using area under the receiver operating curve (AUROC). Time-on-treatment (TOT) and overall survival (OS) were derived from insurance claims and analyzed by Kaplan-Meier method. Hazard ratios (HR) were determined using the Cox proportional hazard model.

Results: Our AI framework achieves clinical-grade performance, with AUROC exceeding 0.97 for MSI/MMRd prediction in CRC and 0.96 for PD-L1 prediction in breast cancer. Patients with biomarker-positive model predictions demonstrated prolonged TOT and OS when treated with pembrolizumab. For breast cancer patients, the model's predictions were superior to PD-L1 IHC in stratifying patients with improved outcomes on pembrolizumab, suggesting a reevaluation of existing PD-L1 status thresholds.

Conclusions: This study promotes the integration of advanced AI tools in clinical pathology, aiming to enhance the precision and efficiency of cancer biomarker evaluation and offering a customizable framework for varied clinical scenarios. Our model enhances predictive accuracy, integrating features from both staining methods, and exhibits superior prognostic precision compared to current biomarker assessments.

人工智能协同H&E和IHC图像分析预测结直肠癌和乳腺癌的癌症生物标志物和生存结果。
背景:最近免疫治疗的进展,特别是派姆单抗,在治疗转移性结直肠癌(CRC)和三阴性乳腺癌(TNBC)方面显示出有希望的结果。准确检测预测性生物标志物,如微卫星不稳定性(MSI)/错配修复缺陷(MMRd)和程序性死亡配体1 (PD-L1),是这些治疗效果的关键。传统的方法,如免疫组织化学(IHC)和下一代测序是有效的,但劳动密集,需要主观解释。方法:利用苏木精伊红和免疫组化染色的全片图像,建立了一种基于变压器的双模态模型,用于预测MSI/MMRd和PD-L1状态。我们使用受试者工作曲线下面积(AUROC)来评估模型。治疗时间(Time-on-treatment, TOT)和总生存期(overall survival, OS)来源于保险索赔,并采用Kaplan-Meier法进行分析。采用Cox比例风险模型确定风险比(HR)。结果:我们的AI框架达到了临床级性能,在CRC中预测MSI/MMRd的AUROC超过0.97,在乳腺癌中预测PD-L1的AUROC超过0.96。生物标志物阳性模型预测的患者在接受派姆单抗治疗时显示TOT和OS延长。对于乳腺癌患者,该模型的预测在派姆单抗改善预后的患者分层方面优于PD-L1 IHC,这表明需要重新评估现有的PD-L1状态阈值。结论:本研究促进了先进的人工智能工具在临床病理学中的整合,旨在提高癌症生物标志物评估的准确性和效率,并为不同的临床场景提供可定制的框架。我们的模型提高了预测准确性,整合了两种染色方法的特征,与目前的生物标志物评估相比,显示出更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信