{"title":"25-hydroxysterol mitigates microgravity-induced retinal damage by suppressing microglial inflammation through disrupting lipid raft formation.","authors":"Jee Hoon Lee, Dae Yu Kim","doi":"10.1038/s41526-025-00507-7","DOIUrl":null,"url":null,"abstract":"<p><p>Spaceflight-associated neuro-ocular syndrome (SANS) poses a significant risk to astronaut vision during long-duration missions, yet its immunological underpinnings remain poorly defined. Here, we identify retinal microglia as key mediators of ocular degeneration under simulated microgravity (SMG). Using a 3D clinostat model, we show that SMG induces early activation of retinal pigment epithelium (RPE), which in turn promotes microglial activation and triggers a feedforward cascade of RPE damage and neuronal loss. We further demonstrate that 25-hydroxycholesterol (25-HC), an oxysterol capable of penetrating the blood-retinal barrier, attenuates this inflammatory cascade by disrupting lipid raft formation in microglia. Low-dose 25-HC suppresses the recruitment of cytokine receptors to lipid rafts, mitigating microglia-driven retinal injury. These findings uncover a critical immunopathological axis underlying SANS and propose 25-HC as a non-invasive, immunomodulatory countermeasure to preserve retinal integrity during spaceflight.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"49"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00507-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) poses a significant risk to astronaut vision during long-duration missions, yet its immunological underpinnings remain poorly defined. Here, we identify retinal microglia as key mediators of ocular degeneration under simulated microgravity (SMG). Using a 3D clinostat model, we show that SMG induces early activation of retinal pigment epithelium (RPE), which in turn promotes microglial activation and triggers a feedforward cascade of RPE damage and neuronal loss. We further demonstrate that 25-hydroxycholesterol (25-HC), an oxysterol capable of penetrating the blood-retinal barrier, attenuates this inflammatory cascade by disrupting lipid raft formation in microglia. Low-dose 25-HC suppresses the recruitment of cytokine receptors to lipid rafts, mitigating microglia-driven retinal injury. These findings uncover a critical immunopathological axis underlying SANS and propose 25-HC as a non-invasive, immunomodulatory countermeasure to preserve retinal integrity during spaceflight.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.