{"title":"Progressive motor dysfunction and loss of cerebellar Purkinje and granule cells in rat offspring after maternal exposure to imidacloprid.","authors":"Xinyu Zou, Yuri Ebizuka, Yuri Sakamaki, Momoka Shobudani, Qian Tang, Mengyuan Luo, Mio Kobayashi, Tetsuhito Kigata, Makoto Shibutani","doi":"10.1016/j.tox.2025.154246","DOIUrl":null,"url":null,"abstract":"<p><p>Imidacloprid (IMI), a major neonicotinoid insecticide, raises concerns about neurodevelopmental abnormalities, particularly attention deficit hyperactivity disorder. However, the involvement of cerebellar development in IMI-induced developmental neurotoxicity has not been studied. Here, this study investigated the maternal exposure effects of IMI on the developing cerebellum in rats. Pregnant Sprague-Dawley rats were fed diet containing IMI at 0 (control), 83, 250 or 750 ppm from gestational day 6 through gestation, and dams treated with the diet during lactation until day 21 postpartum. Male offspring were raised without IMI until postnatal day 77. IMI exposure caused progressive changes of impaired motor coordination (≥ 250 ppm IMI groups) and loss of Purkinje cells (≥ 83 ppm) and granule cells (≥ 250 ppm). IMI suppressed granule cell proliferation by inhibiting sonic hedgehog-mediated cell cycle activation by downregulating Pcna, Cdk2, Shh, and Gli and promoted granule cell apoptosis by upregulating Casp3 during IMI exposure. Neuroinflammation and oxidative stress were key contributors to IMI-induced apoptosis in cerebellar neurons by downregulating Sod2 and upregulating Tnf. The obtained results suggest that exposure to even a lowest dose of IMI (83 ppm; 5.5-14.1 mg/kg/day) can lead to cerebellar defects in rat offspring.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154246"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2025.154246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Imidacloprid (IMI), a major neonicotinoid insecticide, raises concerns about neurodevelopmental abnormalities, particularly attention deficit hyperactivity disorder. However, the involvement of cerebellar development in IMI-induced developmental neurotoxicity has not been studied. Here, this study investigated the maternal exposure effects of IMI on the developing cerebellum in rats. Pregnant Sprague-Dawley rats were fed diet containing IMI at 0 (control), 83, 250 or 750 ppm from gestational day 6 through gestation, and dams treated with the diet during lactation until day 21 postpartum. Male offspring were raised without IMI until postnatal day 77. IMI exposure caused progressive changes of impaired motor coordination (≥ 250 ppm IMI groups) and loss of Purkinje cells (≥ 83 ppm) and granule cells (≥ 250 ppm). IMI suppressed granule cell proliferation by inhibiting sonic hedgehog-mediated cell cycle activation by downregulating Pcna, Cdk2, Shh, and Gli and promoted granule cell apoptosis by upregulating Casp3 during IMI exposure. Neuroinflammation and oxidative stress were key contributors to IMI-induced apoptosis in cerebellar neurons by downregulating Sod2 and upregulating Tnf. The obtained results suggest that exposure to even a lowest dose of IMI (83 ppm; 5.5-14.1 mg/kg/day) can lead to cerebellar defects in rat offspring.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.