State estimation of voltage and frequency stability in solar wind integrated grids using multiple filtering techniques.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Abdulelah Alharbi
{"title":"State estimation of voltage and frequency stability in solar wind integrated grids using multiple filtering techniques.","authors":"Abdulelah Alharbi","doi":"10.1038/s41598-025-10171-2","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing integration of solar and wind energy into modern power grids introduces challenges in maintaining voltage and frequency stability due to their intermittent and uncertain nature. This study evaluates the performance of three advanced state observers: extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) for real-time monitoring and stability assessment in solar and wind-integrated grids (SAWIG). The analysis focuses on estimation accuracy, convergence speed, and classification performance under varying phasor measurement unit (PMU) sampling rates. Simulation results reveal that the CKF achieves the lowest root mean square error (RMSE) of 0.005 at a 10 Hz sampling rate, outperforming the UKF (0.007) and EKF (0.010). In terms of dynamic performance, CKF stabilizes within 0.1 s, while UKF and EKF require 0.2 and 0.4 s, respectively. Classification evaluation shows that CKF achieves the highest accuracy of 99.5%, with precision, recall, and F1-score of 99.2, 99.3, and 99.4%, respectively. In contrast, UKF reports values of 98.8, 98.5, 98.7, and 98.6%, while EKF records 97.6, 96.9, 97.1, and 97.3%. Confusion matrix analysis further confirms a classification accuracy of 95% for CKF. These results demonstrate its robustness, speed, and precision in ensuring reliable state estimation for voltage and frequency stability in renewable-integrated smart grids.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28085"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10171-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing integration of solar and wind energy into modern power grids introduces challenges in maintaining voltage and frequency stability due to their intermittent and uncertain nature. This study evaluates the performance of three advanced state observers: extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) for real-time monitoring and stability assessment in solar and wind-integrated grids (SAWIG). The analysis focuses on estimation accuracy, convergence speed, and classification performance under varying phasor measurement unit (PMU) sampling rates. Simulation results reveal that the CKF achieves the lowest root mean square error (RMSE) of 0.005 at a 10 Hz sampling rate, outperforming the UKF (0.007) and EKF (0.010). In terms of dynamic performance, CKF stabilizes within 0.1 s, while UKF and EKF require 0.2 and 0.4 s, respectively. Classification evaluation shows that CKF achieves the highest accuracy of 99.5%, with precision, recall, and F1-score of 99.2, 99.3, and 99.4%, respectively. In contrast, UKF reports values of 98.8, 98.5, 98.7, and 98.6%, while EKF records 97.6, 96.9, 97.1, and 97.3%. Confusion matrix analysis further confirms a classification accuracy of 95% for CKF. These results demonstrate its robustness, speed, and precision in ensuring reliable state estimation for voltage and frequency stability in renewable-integrated smart grids.

基于多重滤波技术的太阳风综合电网电压频率稳定性状态估计。
太阳能和风能日益融入现代电网,由于其间歇性和不确定性,在保持电压和频率稳定性方面带来了挑战。本研究评估了三种先进状态观测器的性能:扩展卡尔曼滤波器(EKF), unscented卡尔曼滤波器(UKF)和cubature卡尔曼滤波器(CKF),用于太阳能和风能集成电网(SAWIG)的实时监测和稳定性评估。分析了在不同相量测量单元(PMU)采样率下的估计精度、收敛速度和分类性能。仿真结果表明,在10 Hz采样率下,CKF的均方根误差(RMSE)最低,为0.005,优于UKF(0.007)和EKF(0.010)。在动态性能方面,CKF在0.1 s内稳定,而UKF和EKF分别需要0.2 s和0.4 s。分类评价表明,CKF的准确率最高,达到99.5%,准确率为99.2,召回率为99.3,F1-score为99.4%。相反,UKF报告的值为98.8、98.5、98.7和98.6%,而EKF报告的值为97.6、96.9、97.1和97.3%。混淆矩阵分析进一步证实了CKF的分类准确率为95%。这些结果证明了它在确保可再生集成智能电网电压和频率稳定性的可靠状态估计方面的鲁棒性、速度和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信