{"title":"State estimation of voltage and frequency stability in solar wind integrated grids using multiple filtering techniques.","authors":"Abdulelah Alharbi","doi":"10.1038/s41598-025-10171-2","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing integration of solar and wind energy into modern power grids introduces challenges in maintaining voltage and frequency stability due to their intermittent and uncertain nature. This study evaluates the performance of three advanced state observers: extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) for real-time monitoring and stability assessment in solar and wind-integrated grids (SAWIG). The analysis focuses on estimation accuracy, convergence speed, and classification performance under varying phasor measurement unit (PMU) sampling rates. Simulation results reveal that the CKF achieves the lowest root mean square error (RMSE) of 0.005 at a 10 Hz sampling rate, outperforming the UKF (0.007) and EKF (0.010). In terms of dynamic performance, CKF stabilizes within 0.1 s, while UKF and EKF require 0.2 and 0.4 s, respectively. Classification evaluation shows that CKF achieves the highest accuracy of 99.5%, with precision, recall, and F1-score of 99.2, 99.3, and 99.4%, respectively. In contrast, UKF reports values of 98.8, 98.5, 98.7, and 98.6%, while EKF records 97.6, 96.9, 97.1, and 97.3%. Confusion matrix analysis further confirms a classification accuracy of 95% for CKF. These results demonstrate its robustness, speed, and precision in ensuring reliable state estimation for voltage and frequency stability in renewable-integrated smart grids.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28085"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10171-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing integration of solar and wind energy into modern power grids introduces challenges in maintaining voltage and frequency stability due to their intermittent and uncertain nature. This study evaluates the performance of three advanced state observers: extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) for real-time monitoring and stability assessment in solar and wind-integrated grids (SAWIG). The analysis focuses on estimation accuracy, convergence speed, and classification performance under varying phasor measurement unit (PMU) sampling rates. Simulation results reveal that the CKF achieves the lowest root mean square error (RMSE) of 0.005 at a 10 Hz sampling rate, outperforming the UKF (0.007) and EKF (0.010). In terms of dynamic performance, CKF stabilizes within 0.1 s, while UKF and EKF require 0.2 and 0.4 s, respectively. Classification evaluation shows that CKF achieves the highest accuracy of 99.5%, with precision, recall, and F1-score of 99.2, 99.3, and 99.4%, respectively. In contrast, UKF reports values of 98.8, 98.5, 98.7, and 98.6%, while EKF records 97.6, 96.9, 97.1, and 97.3%. Confusion matrix analysis further confirms a classification accuracy of 95% for CKF. These results demonstrate its robustness, speed, and precision in ensuring reliable state estimation for voltage and frequency stability in renewable-integrated smart grids.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.