Signed log-likelihood ratio test for the scale parameter of Poisson Inverse Weibull distribution with the development of PIW4LIFETIME web application.

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-08-01 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0329293
Sukanya Yodnual, Jularat Chumnaul
{"title":"Signed log-likelihood ratio test for the scale parameter of Poisson Inverse Weibull distribution with the development of PIW4LIFETIME web application.","authors":"Sukanya Yodnual, Jularat Chumnaul","doi":"10.1371/journal.pone.0329293","DOIUrl":null,"url":null,"abstract":"<p><p>The three-parameter Poisson Inverse Weibull (PIW) distribution offers enhanced flexibility for modeling system failure times. This study introduces the signed log-likelihood ratio test (SLRT) for hypothesis testing of the scale parameter ([Formula: see text]) in the PIW distribution and compares its performance with the test based on the asymptotic normality of maximum likelihood estimators (ANMLE). Simulation studies show that the SLRT consistently maintains type I error rates within the acceptable range of 0.04 to 0.06 at a significance level of 0.05, satisfying Cochran's criterion across various sample sizes and parameter configurations. In contrast, the ANMLE method tends to be conservative, often underestimating the nominal significance level. In terms of empirical power, the SLRT outperforms the ANMLE, particularly in small-sample scenarios (n = 10, 15), and maintains superior power across all tested configurations. For example, when testing [Formula: see text] against [Formula: see text] with [Formula: see text], and n = 10, the SLRT achieves a power of 0.6621, compared to 0.4181 for the ANMLE, demonstrating the SLRT's robustness and reliability in limited-data. Moreover, the ANMLE generally exhibits low power in most cases, indicating reduced sensitivity to detecting true effects in small samples. However, with medium and large sample sizes (n = 30, 50, 80 and 100), the power of the ANMLE begins to approach that of the SLRT. Despite this, the ANMLE never outperforms the SLRT, highlighting a fundamental limitation of this method. Additionally, varying the shape parameter [Formula: see text] while fixing [Formula: see text] showed a negligible impact on power, further confirming the robustness of the SLRT. Sensitivity analyses also validate the reliability of the SLRT under extreme values of [Formula: see text] and across different sample sizes. To support practical application, the PIW4LIFETIME web application (accessible at https://jularatchumnaul.shinyapps.io/PIW4LIFETIME/) was developed to enable users to assess whether data fit the PIW distribution, estimate model parameters using maximum likelihood, and perform two-sided test for the scale parameter using SLRT. The performance of the proposed method and the PIW4LIFETIME web application was demonstrated through a real-world example.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 8","pages":"e0329293"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0329293","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The three-parameter Poisson Inverse Weibull (PIW) distribution offers enhanced flexibility for modeling system failure times. This study introduces the signed log-likelihood ratio test (SLRT) for hypothesis testing of the scale parameter ([Formula: see text]) in the PIW distribution and compares its performance with the test based on the asymptotic normality of maximum likelihood estimators (ANMLE). Simulation studies show that the SLRT consistently maintains type I error rates within the acceptable range of 0.04 to 0.06 at a significance level of 0.05, satisfying Cochran's criterion across various sample sizes and parameter configurations. In contrast, the ANMLE method tends to be conservative, often underestimating the nominal significance level. In terms of empirical power, the SLRT outperforms the ANMLE, particularly in small-sample scenarios (n = 10, 15), and maintains superior power across all tested configurations. For example, when testing [Formula: see text] against [Formula: see text] with [Formula: see text], and n = 10, the SLRT achieves a power of 0.6621, compared to 0.4181 for the ANMLE, demonstrating the SLRT's robustness and reliability in limited-data. Moreover, the ANMLE generally exhibits low power in most cases, indicating reduced sensitivity to detecting true effects in small samples. However, with medium and large sample sizes (n = 30, 50, 80 and 100), the power of the ANMLE begins to approach that of the SLRT. Despite this, the ANMLE never outperforms the SLRT, highlighting a fundamental limitation of this method. Additionally, varying the shape parameter [Formula: see text] while fixing [Formula: see text] showed a negligible impact on power, further confirming the robustness of the SLRT. Sensitivity analyses also validate the reliability of the SLRT under extreme values of [Formula: see text] and across different sample sizes. To support practical application, the PIW4LIFETIME web application (accessible at https://jularatchumnaul.shinyapps.io/PIW4LIFETIME/) was developed to enable users to assess whether data fit the PIW distribution, estimate model parameters using maximum likelihood, and perform two-sided test for the scale parameter using SLRT. The performance of the proposed method and the PIW4LIFETIME web application was demonstrated through a real-world example.

基于PIW4LIFETIME web应用的泊松反威布尔分布尺度参数的符号对数似然比检验。
三参数泊松逆威布尔(PIW)分布为系统故障时间建模提供了增强的灵活性。本研究引入了符号对数似然比检验(SLRT)对PIW分布中尺度参数([公式:见文])进行假设检验,并将其性能与基于极大似然估计(ANMLE)渐近正态性的检验进行比较。仿真研究表明,在显著性水平为0.05的情况下,SLRT始终将I型错误率维持在0.04 ~ 0.06的可接受范围内,满足各种样本量和参数配置的Cochran标准。相比之下,ANMLE方法倾向于保守,经常低估名义显著性水平。在经验功率方面,SLRT优于ANMLE,特别是在小样本场景(n = 10,15)中,并且在所有测试配置中保持优越的功率。例如,当用[Formula: see text]对[Formula: see text]和[Formula: see text]进行测试时,当n = 10时,SLRT的功率为0.6621,而ANMLE的功率为0.4181,这表明SLRT在有限数据中的鲁棒性和可靠性。此外,在大多数情况下,ANMLE通常表现出低功率,这表明在小样本中检测真实效果的灵敏度降低。然而,在中样本量和大样本量(n = 30,50,80和100)时,ANMLE的功率开始接近SLRT。尽管如此,ANMLE从来没有超过SLRT,突出了该方法的一个基本限制。此外,在固定[公式:见文本]的同时改变形状参数[公式:见文本],对功率的影响可以忽略不计,进一步证实了SLRT的鲁棒性。敏感性分析也验证了SLRT在[公式:见文本]极值和不同样本量下的可靠性。为了支持实际应用,我们开发了PIW4LIFETIME web应用程序(可访问:https://jularatchumnaul.shinyapps.io/PIW4LIFETIME/),使用户能够评估数据是否符合PIW分布,使用最大似然法估计模型参数,并使用SLRT对量表参数进行双边检验。通过实例验证了该方法和PIW4LIFETIME web应用程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信