A bottom-up approach to find lead compounds in expansive chemical spaces.

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Álvaro Serrano-Morrás, Andrea Bertran-Mostazo, Marina Miñarro-Lleonar, Arnau Comajuncosa-Creus, Adrià Cabello, Carme Labranya, Carmen Escudero, Tian V Tian, Inna Khutorianska, Dmytro S Radchenko, Yurii S Moroz, Lucas Defelipe, David Ruiz-Carrillo, Maria Garcia-Alai, Robert Schmidt, Matthias Rarey, Patrick Aloy, Carles Galdeano, Jordi Juárez-Jiménez, Xavier Barril
{"title":"A bottom-up approach to find lead compounds in expansive chemical spaces.","authors":"Álvaro Serrano-Morrás, Andrea Bertran-Mostazo, Marina Miñarro-Lleonar, Arnau Comajuncosa-Creus, Adrià Cabello, Carme Labranya, Carmen Escudero, Tian V Tian, Inna Khutorianska, Dmytro S Radchenko, Yurii S Moroz, Lucas Defelipe, David Ruiz-Carrillo, Maria Garcia-Alai, Robert Schmidt, Matthias Rarey, Patrick Aloy, Carles Galdeano, Jordi Juárez-Jiménez, Xavier Barril","doi":"10.1038/s42004-025-01610-2","DOIUrl":null,"url":null,"abstract":"<p><p>Drug discovery starts with the identification of a \"hit\" compound that, following a long and expensive optimization process, evolves into a drug candidate. Bigger screening collections increase the odds of finding more and better hits. For this reason, large pharmaceutical companies have invested heavily in high-throughput screening (HTS) collections that can contain several million compounds. However, this figure pales in comparison with the emergent on-demand chemical collections, which have recently reached the trillion scale. These chemical collections are potentially transformative for drug discovery, as they could deliver many diverse and high-quality hits, even reaching lead-like starting points. But first, it will be necessary to develop computational tools capable of efficiently navigating such massive virtual collections. To address this challenge, we have conceived an innovative strategy that explores the chemical universe from the bottom up, performing a systematic search on the fragment space (exploration phase), to then mine the most promising areas of on-demand collections (exploitation phase). Using a hierarchy of increasingly sophisticated computational methods to remove false positives, we maximize the success probability and minimize the overall computational cost. A basic implementation of the concept has enabled us to validate the strategy prospectively, allowing the identification of new BRD4 (BD1) binders with potencies comparable to stablished drug candidates.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"225"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01610-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug discovery starts with the identification of a "hit" compound that, following a long and expensive optimization process, evolves into a drug candidate. Bigger screening collections increase the odds of finding more and better hits. For this reason, large pharmaceutical companies have invested heavily in high-throughput screening (HTS) collections that can contain several million compounds. However, this figure pales in comparison with the emergent on-demand chemical collections, which have recently reached the trillion scale. These chemical collections are potentially transformative for drug discovery, as they could deliver many diverse and high-quality hits, even reaching lead-like starting points. But first, it will be necessary to develop computational tools capable of efficiently navigating such massive virtual collections. To address this challenge, we have conceived an innovative strategy that explores the chemical universe from the bottom up, performing a systematic search on the fragment space (exploration phase), to then mine the most promising areas of on-demand collections (exploitation phase). Using a hierarchy of increasingly sophisticated computational methods to remove false positives, we maximize the success probability and minimize the overall computational cost. A basic implementation of the concept has enabled us to validate the strategy prospectively, allowing the identification of new BRD4 (BD1) binders with potencies comparable to stablished drug candidates.

一种在广阔的化学空间中寻找铅化合物的自下而上的方法。
药物发现始于确定“命中”的化合物,经过漫长而昂贵的优化过程,演变成候选药物。更大的放映集增加了找到更多更好的热门影片的几率。由于这个原因,大型制药公司已经在高通量筛选(HTS)集合上投入了大量资金,这些集合可以包含数百万种化合物。然而,这一数字与最近已达到万亿规模的新兴按需化学收藏品相比相形见绌。这些化学集合对药物发现具有潜在的变革意义,因为它们可以提供许多不同的高质量药物,甚至可以达到像铅一样的起点。但首先,有必要开发出能够有效导航如此庞大的虚拟集合的计算工具。为了应对这一挑战,我们设想了一种创新的策略,从下至上探索化学宇宙,在碎片空间(探索阶段)上进行系统搜索,然后挖掘按需收集的最有前途的领域(开发阶段)。使用越来越复杂的计算方法层次结构来消除误报,我们最大化了成功概率并最小化了总体计算成本。该概念的基本实现使我们能够前瞻性地验证该策略,从而鉴定出与已建立的候选药物具有相当效力的新BRD4 (BD1)结合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信