{"title":"Unpaired T1-weighted MRI synthesis from T2-weighted data using unsupervised learning.","authors":"Junxiong Zhao, Nvjia Zeng, Lei Zhao, Na Li","doi":"10.1016/j.apradiso.2025.112049","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) is indispensable for modern diagnostics because of its detailed anatomical and functional information without the use of ionizing radiation. However, acquiring multiple imaging sequences - such as T1-weighted (T1w) and T2-weighted (T2w) scans - can prolong scan times, increase patient discomfort, and raise healthcare costs. In this study, we propose an unsupervised framework based on a contrast-sensitive domain translation network with adaptive feature normalization to translate unpaired T2w MRI images into clinically acceptable T1w images. Our method employs adversarial training, along with cycle consistency, identity, and attention-guided loss functions. These components ensure that the generated images not only preserve essential anatomical details but also exhibit high visual fidelity compared to ground truth T1w images. Quantitative evaluation on a publicly available MRI dataset yielded a mean Peak Signal-to-Noise Ratio (PSNR) of 22.403 dB, a mean Structural Similarity Index (SSIM) of 0.775, Root Mean Squared Error (RMSE) of 0.078, and Mean Absolute Error (MAE) of 0.036. Additional analysis of pixel intensity and grayscale distributions further supported the consistency between the generated and ground truth images. Qualitative assessment included visual comparison to assess perceptual fidelity. These promising results suggest that a contrast-sensitive domain translation network with an adaptive feature normalization framework can effectively generate realistic T1w images from T2w inputs, potentially reducing the need for acquiring multiple sequences and thereby streamlining MRI protocols.</p>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"225 ","pages":"112049"},"PeriodicalIF":1.8000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.apradiso.2025.112049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic Resonance Imaging (MRI) is indispensable for modern diagnostics because of its detailed anatomical and functional information without the use of ionizing radiation. However, acquiring multiple imaging sequences - such as T1-weighted (T1w) and T2-weighted (T2w) scans - can prolong scan times, increase patient discomfort, and raise healthcare costs. In this study, we propose an unsupervised framework based on a contrast-sensitive domain translation network with adaptive feature normalization to translate unpaired T2w MRI images into clinically acceptable T1w images. Our method employs adversarial training, along with cycle consistency, identity, and attention-guided loss functions. These components ensure that the generated images not only preserve essential anatomical details but also exhibit high visual fidelity compared to ground truth T1w images. Quantitative evaluation on a publicly available MRI dataset yielded a mean Peak Signal-to-Noise Ratio (PSNR) of 22.403 dB, a mean Structural Similarity Index (SSIM) of 0.775, Root Mean Squared Error (RMSE) of 0.078, and Mean Absolute Error (MAE) of 0.036. Additional analysis of pixel intensity and grayscale distributions further supported the consistency between the generated and ground truth images. Qualitative assessment included visual comparison to assess perceptual fidelity. These promising results suggest that a contrast-sensitive domain translation network with an adaptive feature normalization framework can effectively generate realistic T1w images from T2w inputs, potentially reducing the need for acquiring multiple sequences and thereby streamlining MRI protocols.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.