{"title":"Ultrasonic-driven synthesis of Cu-chlorophyllin-stabilized silver nanoparticles for high-efficiency antimicrobial surgical suture coatings","authors":"Saran Sombutjiraporn , Arjnarong Mathaweesansurn , Rathawat Daengngern , Ekarat Detsri","doi":"10.1016/j.chphi.2025.100925","DOIUrl":null,"url":null,"abstract":"<div><div>A novel Cu-chlorophyllin-stabilized silver nanoparticle (Ag<sup>0</sup><sub>NPs</sub>-Chl<sub>Cu</sub>) with potent antimicrobial properties was synthesized for the first time using an ultrasonically driven chemical reduction approach. In this approach, Cu-chlorophyllin (Chl<sub>Cu</sub>) acts as a stabilizing ligand, while sodium borohydride functions as the chemical reductant. The formation mechanism of Ag<sup>0</sup>-NPs<sub>CHL</sub> was elucidated, revealing that ultrasonic irradiation facilitates the in situ reduction of Ag (I) and its subsequent incorporation into the Chl<sub>Cu</sub> complex. Four pyrrole rings coordinate with Ag<sup>0</sup><sub>NPs</sub> through four nitrogen atoms, which serve as adsorption sites for the anchorage of Ag<sup>0</sup>-NPs<sub>CHL</sub>. Characterization by XPS revealed the presence of Ag-N bonding involving pyrrole units on the FCC structure of Ag<sup>0</sup><sub>NPs</sub>. Ag<sup>0</sup><sub>NPs</sub>-Chl<sub>Cu</sub> demonstrated a zeta potential of (-) 35.57±3.54 mV with a spherical shape and an average size of 6.72±1.72 nm, resulting in a stable colloidal dispersion with a monodispersed index. The synthesized Ag<sup>0</sup>-NPs<sub>CHL</sub> nanocomposites were subsequently deposited onto polyamide surgical sutures via an electrostatic Layer-by-Layer (LbL) self-assembly technique. The coated sutures exhibited >99.9 % antibacterial efficiency against <em>E. coli</em> (ATCC25922), <em>S. aureus</em> (ATCC25923), and <em>A. baumanii</em> (ATCC19606). While nanoparticle accumulation was observed in human primary epidermal keratinocyte (HEKa) cells, no cytotoxic effects were detected in the epidermis. This study highlights the effectiveness of Chl<sub>Cu</sub> as a dual stabilizing and coordinating agent for Ag⁰<sub>NPs</sub>, offering a promising approach for developing antimicrobial surgical materials.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100925"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel Cu-chlorophyllin-stabilized silver nanoparticle (Ag0NPs-ChlCu) with potent antimicrobial properties was synthesized for the first time using an ultrasonically driven chemical reduction approach. In this approach, Cu-chlorophyllin (ChlCu) acts as a stabilizing ligand, while sodium borohydride functions as the chemical reductant. The formation mechanism of Ag0-NPsCHL was elucidated, revealing that ultrasonic irradiation facilitates the in situ reduction of Ag (I) and its subsequent incorporation into the ChlCu complex. Four pyrrole rings coordinate with Ag0NPs through four nitrogen atoms, which serve as adsorption sites for the anchorage of Ag0-NPsCHL. Characterization by XPS revealed the presence of Ag-N bonding involving pyrrole units on the FCC structure of Ag0NPs. Ag0NPs-ChlCu demonstrated a zeta potential of (-) 35.57±3.54 mV with a spherical shape and an average size of 6.72±1.72 nm, resulting in a stable colloidal dispersion with a monodispersed index. The synthesized Ag0-NPsCHL nanocomposites were subsequently deposited onto polyamide surgical sutures via an electrostatic Layer-by-Layer (LbL) self-assembly technique. The coated sutures exhibited >99.9 % antibacterial efficiency against E. coli (ATCC25922), S. aureus (ATCC25923), and A. baumanii (ATCC19606). While nanoparticle accumulation was observed in human primary epidermal keratinocyte (HEKa) cells, no cytotoxic effects were detected in the epidermis. This study highlights the effectiveness of ChlCu as a dual stabilizing and coordinating agent for Ag⁰NPs, offering a promising approach for developing antimicrobial surgical materials.