Laurens Parret , Kenneth Simoens , Jo De Vrieze , Ilse Smets
{"title":"BIO-SPEC: An open-source bench-top parallel bioreactor system","authors":"Laurens Parret , Kenneth Simoens , Jo De Vrieze , Ilse Smets","doi":"10.1016/j.ohx.2025.e00670","DOIUrl":null,"url":null,"abstract":"<div><div>The BIO-SPEC is an open-source, cost-effective, and modular bench-top bioreactor system designed for batch, sequencing batch, and chemostat cultivation. Featuring thermoelectric condensers to eliminate the need for a chiller, it ensures stable long-term operation. Controlled by a Raspberry Pi, the BIO-SPEC offers flexibility in headplate design, gas supply, and feeding strategies, making it a versatile alternative to high-cost commercial systems. This paper details the design, construction, and validation of the BIO-SPEC system, demonstrating its potential to advance microbiology and bioprocessing research through accessible and reliable hardware at a fraction of the cost of commercial systems.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00670"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The BIO-SPEC is an open-source, cost-effective, and modular bench-top bioreactor system designed for batch, sequencing batch, and chemostat cultivation. Featuring thermoelectric condensers to eliminate the need for a chiller, it ensures stable long-term operation. Controlled by a Raspberry Pi, the BIO-SPEC offers flexibility in headplate design, gas supply, and feeding strategies, making it a versatile alternative to high-cost commercial systems. This paper details the design, construction, and validation of the BIO-SPEC system, demonstrating its potential to advance microbiology and bioprocessing research through accessible and reliable hardware at a fraction of the cost of commercial systems.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.