Analytical study on the relationship among Land Surface Temperature, Land Use Land Cover, and spectral indices using geospatial techniques over Sikhottabong District, Laos
{"title":"Analytical study on the relationship among Land Surface Temperature, Land Use Land Cover, and spectral indices using geospatial techniques over Sikhottabong District, Laos","authors":"Jedtavong Thepvongsa , Erni Saurmalinda Butar Butar","doi":"10.1016/j.cscee.2025.101269","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the relationship between Land Surface Temperature and Land Use/Land Cover in Sikhottabong District, Laos, for the years 1992 and 2023, utilizing Landsat imagery from 1992 to 2023. Geospatial techniques in Google Earth Engine were used to assess Land Use/Land Cover transitions and estimate Land Surface Temperature. Results show that built-up areas have doubled, forests have declined by 30 %, and agricultural areas have increased by 24 %. Land Surface Temperature positively correlates with the Normalized Difference Built-up Index and the Normalized Difference Bare Soil Index, and negatively with the Normalized Difference Water Index. The findings highlight how urban expansion raises Land Surface Temperature, while water bodies help mitigate it. To address the observed rise in Land Surface Temperature, strategies such as enhancing urban green spaces, promoting afforestation, and improving urban water management are recommended to mitigate the heat island effect and support sustainable urban development in Sikhottabong District.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"12 ","pages":"Article 101269"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016425001768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the relationship between Land Surface Temperature and Land Use/Land Cover in Sikhottabong District, Laos, for the years 1992 and 2023, utilizing Landsat imagery from 1992 to 2023. Geospatial techniques in Google Earth Engine were used to assess Land Use/Land Cover transitions and estimate Land Surface Temperature. Results show that built-up areas have doubled, forests have declined by 30 %, and agricultural areas have increased by 24 %. Land Surface Temperature positively correlates with the Normalized Difference Built-up Index and the Normalized Difference Bare Soil Index, and negatively with the Normalized Difference Water Index. The findings highlight how urban expansion raises Land Surface Temperature, while water bodies help mitigate it. To address the observed rise in Land Surface Temperature, strategies such as enhancing urban green spaces, promoting afforestation, and improving urban water management are recommended to mitigate the heat island effect and support sustainable urban development in Sikhottabong District.