Real-time guidance and automated measurements using deep learning to improve echocardiographic assessment of left ventricular size and function.

European heart journal. Imaging methods and practice Pub Date : 2025-07-21 eCollection Date: 2025-07-01 DOI:10.1093/ehjimp/qyaf094
Sigbjorn Sabo, Håkon Pettersen, Gunn C Bøen, Even O Jakobsen, Per K Langøy, Hans O Nilsen, David Pasdeloup, Erik Smistad, Andreas Østvik, Lasse Løvstakken, Stian Stølen, Bjørnar Grenne, Håvard Dalen, Espen Holte
{"title":"Real-time guidance and automated measurements using deep learning to improve echocardiographic assessment of left ventricular size and function.","authors":"Sigbjorn Sabo, Håkon Pettersen, Gunn C Bøen, Even O Jakobsen, Per K Langøy, Hans O Nilsen, David Pasdeloup, Erik Smistad, Andreas Østvik, Lasse Løvstakken, Stian Stølen, Bjørnar Grenne, Håvard Dalen, Espen Holte","doi":"10.1093/ehjimp/qyaf094","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The low reproducibility of echocardiographic measurements challenges the identification of subtle changes in left ventricular (LV) function. Deep learning (DL) methods enable real-time analysis of acquisitions and may improve echocardiography. The aim of this study was to evaluate the impact of DL-based guidance and automated measurements on the reproducibility of LV global longitudinal strain (GLS), end-diastolic (EDV) and end-systolic (ESV) volume, and ejection fraction (EF).</p><p><strong>Methods and results: </strong>Forty-six patients (24 breast cancer and 22 general cardiology patients) were included and underwent four consecutive echocardiograms. Six were included twice, totalling 52 inclusions and 208 echocardiograms. One sonographer-cardiologist pair used DL guidance and measurements (DL group), while another did not use DL tools and performed manual measurements (manual group). DL group recordings were also measured using a commercially available DL-based EF tool. For GLS, the DL group had a 30% lower test-retest variability than the manual group (minimal detectable change 2.0 vs. 2.9, <i>P</i> = 0.036). LV volumes had ∼40% lower minimal detectable changes in the DL group vs. the manual group (32 mL vs. 52 mL for EDV and 18 mL vs. 32 mL for ESV, <i>P</i> ≤ 0.006). This did not translate to a significant improvement in EF reproducibility in the DL group. The benchmarking method showed similar results compared with the manual group.</p><p><strong>Conclusion: </strong>Combining real-time DL guidance with automated measurements improved the reproducibility of LV size and function measurements compared with usual care, but future studies are needed to evaluate its clinical effect.</p><p><strong>Trial registration number: </strong>NCT06310330.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"3 2","pages":"qyaf094"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyaf094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: The low reproducibility of echocardiographic measurements challenges the identification of subtle changes in left ventricular (LV) function. Deep learning (DL) methods enable real-time analysis of acquisitions and may improve echocardiography. The aim of this study was to evaluate the impact of DL-based guidance and automated measurements on the reproducibility of LV global longitudinal strain (GLS), end-diastolic (EDV) and end-systolic (ESV) volume, and ejection fraction (EF).

Methods and results: Forty-six patients (24 breast cancer and 22 general cardiology patients) were included and underwent four consecutive echocardiograms. Six were included twice, totalling 52 inclusions and 208 echocardiograms. One sonographer-cardiologist pair used DL guidance and measurements (DL group), while another did not use DL tools and performed manual measurements (manual group). DL group recordings were also measured using a commercially available DL-based EF tool. For GLS, the DL group had a 30% lower test-retest variability than the manual group (minimal detectable change 2.0 vs. 2.9, P = 0.036). LV volumes had ∼40% lower minimal detectable changes in the DL group vs. the manual group (32 mL vs. 52 mL for EDV and 18 mL vs. 32 mL for ESV, P ≤ 0.006). This did not translate to a significant improvement in EF reproducibility in the DL group. The benchmarking method showed similar results compared with the manual group.

Conclusion: Combining real-time DL guidance with automated measurements improved the reproducibility of LV size and function measurements compared with usual care, but future studies are needed to evaluate its clinical effect.

Trial registration number: NCT06310330.

Abstract Image

Abstract Image

Abstract Image

实时指导和自动化测量使用深度学习,以改善超声心动图评估左心室大小和功能。
目的:超声心动图测量的低再现性对左心室(LV)功能细微变化的识别提出了挑战。深度学习(DL)方法能够实时分析采集,并可能改善超声心动图。本研究的目的是评估基于dl的引导和自动测量对左室整体纵向应变(GLS)、舒张末期(EDV)和收缩末期(ESV)体积和射血分数(EF)的再现性的影响。方法和结果:纳入46例患者(24例乳腺癌患者和22例普通心脏病患者),并连续进行4次超声心动图检查。6例纳入两次,共52例,超声心动图208例。一组超声医师-心脏科医师使用DL指导和测量(DL组),而另一组不使用DL工具并进行手动测量(手动组)。DL组记录也使用市售的基于DL的EF工具进行测量。对于GLS, DL组的重测变异性比手动组低30%(最小可检测变化2.0 vs 2.9, P = 0.036)。DL组的LV体积最小可检测变化比手动组低40% (EDV为32 mL vs 52 mL, ESV为18 mL vs 32 mL, P≤0.006)。这并没有转化为DL组EF重现性的显著改善。与手动组相比,基准测试方法显示了相似的结果。结论:与常规护理相比,实时DL引导与自动测量相结合提高了左室大小和功能测量的可重复性,但其临床效果有待进一步研究评价。试验注册号:NCT06310330。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信