B P Pradeep Kumar, E Naresh, A Ashwitha, Kadiri Thirupal Reddy, N N Srinidhi
{"title":"The Burn Grafting Image Reclamation Redefined with the Peak-Valley Approach.","authors":"B P Pradeep Kumar, E Naresh, A Ashwitha, Kadiri Thirupal Reddy, N N Srinidhi","doi":"10.1615/CritRevBiomedEng.v53.i2.40","DOIUrl":null,"url":null,"abstract":"<p><p>Burn injuries constitute a significant public health challenge, often necessitating the expertise of medical professionals for diagnosis. However, in scenarios where specialized facilities are unavailable, the utility of automated burn assessment tools becomes evident. Factors such as burn area, depth, and location play a pivotal role in determining burn severity. In this study, we present a classification model for burn diagnosis, leveraging automated machine learning techniques. Our approach includes an image reclamation system that incorporates the peak and valley algorithm, ensuring the removal of noise while consistently delivering high-quality results. By using skewness and kurtosis, we demonstrate substantial improvements in diagnostic accuracy. Our proposed system sources key features from enhanced grafting samples using peak valley transformation, enabling the computation of BQs and a unique bin analysis to enhance image reclamation. Our experimental results highlight efficiency gains, notably growing the matching features of graft samples for 14 matching images. The intended work involves the creation of a burn classification reclamation model. The proposed approach utilizes a support vector machine (SVM). The evaluation of the model will be conducted using an untrained catalogue, with a specific focus on its effectiveness in reclaiming images that necessitate grafts and distinguishing them from those that do not. Our approach holds promise in grafting sample reclamation in emergency settings, thereby expediting more accurate diagnoses and treatments for acute burn injuries. This work has the latent to save lives and improve patient upshots in burn traumas.</p>","PeriodicalId":94308,"journal":{"name":"Critical reviews in biomedical engineering","volume":"53 2","pages":"21-35"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.v53.i2.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Burn injuries constitute a significant public health challenge, often necessitating the expertise of medical professionals for diagnosis. However, in scenarios where specialized facilities are unavailable, the utility of automated burn assessment tools becomes evident. Factors such as burn area, depth, and location play a pivotal role in determining burn severity. In this study, we present a classification model for burn diagnosis, leveraging automated machine learning techniques. Our approach includes an image reclamation system that incorporates the peak and valley algorithm, ensuring the removal of noise while consistently delivering high-quality results. By using skewness and kurtosis, we demonstrate substantial improvements in diagnostic accuracy. Our proposed system sources key features from enhanced grafting samples using peak valley transformation, enabling the computation of BQs and a unique bin analysis to enhance image reclamation. Our experimental results highlight efficiency gains, notably growing the matching features of graft samples for 14 matching images. The intended work involves the creation of a burn classification reclamation model. The proposed approach utilizes a support vector machine (SVM). The evaluation of the model will be conducted using an untrained catalogue, with a specific focus on its effectiveness in reclaiming images that necessitate grafts and distinguishing them from those that do not. Our approach holds promise in grafting sample reclamation in emergency settings, thereby expediting more accurate diagnoses and treatments for acute burn injuries. This work has the latent to save lives and improve patient upshots in burn traumas.