Tobias Peherstorfer, Sophia Ulonska, Bianca Burger, Simone Lucato, Bader Al-Hamdan, Marvin Kleinlehner, Till F M Andlauer, Katja Buhler
{"title":"Circuit Mining in Transcriptomics Data.","authors":"Tobias Peherstorfer, Sophia Ulonska, Bianca Burger, Simone Lucato, Bader Al-Hamdan, Marvin Kleinlehner, Till F M Andlauer, Katja Buhler","doi":"10.1109/MCG.2025.3594562","DOIUrl":null,"url":null,"abstract":"<p><p>A central goal in neuropharmacological research is to alter brain function by targeting genes whose expression is specific to the corresponding brain circuit. Identifying such genes in large spatially resolved transcriptomics data requires the expertise of bioinformaticians for handling data complexity and to perform statistical tests. This time-consuming process is often decoupled from the routine workflow of neuroscientists, inhibiting fast target discovery. Here, we present a visual analytics approach to mining expression data in the context of meso-scale brain circuits for potential target genes tailored to domain experts with limited technical background. We support several workflows for interactive definition and refinement of circuits in the human or mouse brain, and combine spatial indexing with an alternative formulation of sample variance to enable differential gene expression analysis in arbitrary brain circuits at runtime. A user study highlights the usefulness, benefits, and future potential of our work.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":"35-48"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2025.3594562","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A central goal in neuropharmacological research is to alter brain function by targeting genes whose expression is specific to the corresponding brain circuit. Identifying such genes in large spatially resolved transcriptomics data requires the expertise of bioinformaticians for handling data complexity and to perform statistical tests. This time-consuming process is often decoupled from the routine workflow of neuroscientists, inhibiting fast target discovery. Here, we present a visual analytics approach to mining expression data in the context of meso-scale brain circuits for potential target genes tailored to domain experts with limited technical background. We support several workflows for interactive definition and refinement of circuits in the human or mouse brain, and combine spatial indexing with an alternative formulation of sample variance to enable differential gene expression analysis in arbitrary brain circuits at runtime. A user study highlights the usefulness, benefits, and future potential of our work.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.