Formal [1 + 2 + 3] Annulation of Anilines and CF3-Containing Ynones via 6π-Electrocyclization

IF 6.2
Lili Feng, Shao-Fei Ni, Yunfei Lai, Xiaoying Zhang, Zheng-Xuan Lu, Heng-Ying Xiong*, Guangwu Zhang* and Teng Wang*, 
{"title":"Formal [1 + 2 + 3] Annulation of Anilines and CF3-Containing Ynones via 6π-Electrocyclization","authors":"Lili Feng,&nbsp;Shao-Fei Ni,&nbsp;Yunfei Lai,&nbsp;Xiaoying Zhang,&nbsp;Zheng-Xuan Lu,&nbsp;Heng-Ying Xiong*,&nbsp;Guangwu Zhang* and Teng Wang*,&nbsp;","doi":"10.1021/prechem.5c00037","DOIUrl":null,"url":null,"abstract":"<p >Six-membered <i>N</i>-heterocycles, such as 2-pyridones, are crucial in bioactive compounds and prevalent in natural products and pharmaceuticals, necessitating innovative synthesis approaches. Traditional methods, typically reliant on the transition-metal-catalyzed direct cyclization of alkynes, face limitations in product complexity. This study introduces a [1 + 2 + 3] annulation strategy for synthesizing 2-pyridones, employing anilines and CF<sub>3</sub>-ynones through a base-promoted metal-free catalytic system. This method offers a more streamlined approach to generating polysubstituted 2-pyridones, demonstrating enhanced functional group compatibility across substrates compared with existing transformations. The anilines’ adjacent dialkyl amino groups significantly contribute to the reaction, serving as both proton reservoirs and directing groups, facilitating the formation of 2-pyridones. This reaction involves a ring closure/opening sequence, followed by aza-6π-electrocyclization and a C–C bond cleavage-driven aromatization process. The method’s synthetic utility is further validated by its applicability in subsequent transformations, marking an advancement in the synthesis of complex <i>N</i>-heterocyclic compounds.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 7","pages":"365–371"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.5c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Six-membered N-heterocycles, such as 2-pyridones, are crucial in bioactive compounds and prevalent in natural products and pharmaceuticals, necessitating innovative synthesis approaches. Traditional methods, typically reliant on the transition-metal-catalyzed direct cyclization of alkynes, face limitations in product complexity. This study introduces a [1 + 2 + 3] annulation strategy for synthesizing 2-pyridones, employing anilines and CF3-ynones through a base-promoted metal-free catalytic system. This method offers a more streamlined approach to generating polysubstituted 2-pyridones, demonstrating enhanced functional group compatibility across substrates compared with existing transformations. The anilines’ adjacent dialkyl amino groups significantly contribute to the reaction, serving as both proton reservoirs and directing groups, facilitating the formation of 2-pyridones. This reaction involves a ring closure/opening sequence, followed by aza-6π-electrocyclization and a C–C bond cleavage-driven aromatization process. The method’s synthetic utility is further validated by its applicability in subsequent transformations, marking an advancement in the synthesis of complex N-heterocyclic compounds.

苯胺和含CF3炔酮的6π-电环化[1 + 2 + 3]环化。
六元n杂环,如2-吡啶酮,是生物活性化合物的重要组成部分,在天然产物和药物中普遍存在,需要创新的合成方法。传统的方法,通常依赖于过渡金属催化的炔的直接环化,面临产品复杂性的限制。本研究介绍了以苯胺和cf3 -炔酮为原料,通过碱促进的无金属催化体系合成2-吡啶酮的[1 + 2 + 3]环化策略。该方法提供了一种更简化的方法来生成多取代2-吡啶酮,与现有的转化相比,显示出跨底物的官能团相容性增强。苯胺邻近的二烷基氨基对反应有重要作用,既充当质子储存器,又充当导向基团,促进了2-吡啶酮的形成。该反应包括一个环闭合/打开序列,随后是一个氮杂-6π电环化和一个C-C键裂解驱动的芳构化过程。该方法在后续转化中的适用性进一步验证了该方法的合成实用性,标志着复杂n -杂环化合物合成的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信