Radiomics for preoperative pancreatic ductal adenocarcinoma risk stratification: Cross-population validation, multidimensional integration, challenges, and future directions.

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Qin-Zhi Liu, Lei Zeng, Nian-Zhe Sun
{"title":"Radiomics for preoperative pancreatic ductal adenocarcinoma risk stratification: Cross-population validation, multidimensional integration, challenges, and future directions.","authors":"Qin-Zhi Liu, Lei Zeng, Nian-Zhe Sun","doi":"10.4329/wjr.v17.i7.110048","DOIUrl":null,"url":null,"abstract":"<p><p>This editorial critically evaluated Liu <i>et al</i>'s recent retrospective analysis of 283 Chinese patients with resectable pancreatic ductal adenocarcinoma (PDAC) that validated a preoperative computed tomography-based risk scoring system originally developed in South Korea. The scoring system incorporated five parameters: (1) Tumor size; (2) Portal venous phase density; (3) Necrosis; (4) Peripancreatic infiltration; and (5) Suspected metastatic lymph nodes. While demonstrating satisfactory recurrence prediction capability without requiring complex technologies, thereby supporting clinical utility in Chinese populations, the study exhibited notable limitations. Most analyzed patients lacked neoadjuvant chemotherapy exposure, resulting in underrepresentation of low-risk subgroups. Additionally, the short follow-up duration potentially compromised long-term prognostic assessment. Contemporary advances in radiomics coupled with machine learning have enhanced multimodal data integration for PDAC management. However, clinical implementation continues to confront challenges including variability in imaging parameters, incomplete understanding of molecular underpinnings, and confounding treatment effects. Future investigations should prioritize developing multidimensional predictive frameworks that synergize radiographic, molecular, and clinical data. Prospective multicenter validation and artificial intelligence-powered real-time risk stratification systems represent essential steps to overcome current barriers in precision medicine translation, ultimately advancing personalized therapeutic strategies for PDAC.</p>","PeriodicalId":23819,"journal":{"name":"World journal of radiology","volume":"17 7","pages":"110048"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4329/wjr.v17.i7.110048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This editorial critically evaluated Liu et al's recent retrospective analysis of 283 Chinese patients with resectable pancreatic ductal adenocarcinoma (PDAC) that validated a preoperative computed tomography-based risk scoring system originally developed in South Korea. The scoring system incorporated five parameters: (1) Tumor size; (2) Portal venous phase density; (3) Necrosis; (4) Peripancreatic infiltration; and (5) Suspected metastatic lymph nodes. While demonstrating satisfactory recurrence prediction capability without requiring complex technologies, thereby supporting clinical utility in Chinese populations, the study exhibited notable limitations. Most analyzed patients lacked neoadjuvant chemotherapy exposure, resulting in underrepresentation of low-risk subgroups. Additionally, the short follow-up duration potentially compromised long-term prognostic assessment. Contemporary advances in radiomics coupled with machine learning have enhanced multimodal data integration for PDAC management. However, clinical implementation continues to confront challenges including variability in imaging parameters, incomplete understanding of molecular underpinnings, and confounding treatment effects. Future investigations should prioritize developing multidimensional predictive frameworks that synergize radiographic, molecular, and clinical data. Prospective multicenter validation and artificial intelligence-powered real-time risk stratification systems represent essential steps to overcome current barriers in precision medicine translation, ultimately advancing personalized therapeutic strategies for PDAC.

术前胰腺导管腺癌风险分层的放射组学:跨人群验证、多维整合、挑战和未来方向。
这篇社论批判性地评价了Liu等人最近对283例可切除胰腺导管腺癌(PDAC)的中国患者的回顾性分析,该分析验证了最初在韩国开发的基于术前计算机断层扫描的风险评分系统。评分系统包括5个参数:(1)肿瘤大小;(2)门静脉相密度;(3)坏死;(4)胰腺周围浸润;(5)疑似转移性淋巴结。虽然在不需要复杂技术的情况下证明了令人满意的复发预测能力,从而支持在中国人群中的临床应用,但该研究显示出明显的局限性。大多数分析的患者缺乏新辅助化疗暴露,导致低风险亚组的代表性不足。此外,随访时间短可能影响长期预后评估。放射组学与机器学习的当代进步增强了PDAC管理的多模态数据集成。然而,临床应用继续面临挑战,包括成像参数的变化、对分子基础的不完全理解以及治疗效果的混淆。未来的研究应优先发展多维预测框架,协同放射学、分子和临床数据。前瞻性多中心验证和人工智能驱动的实时风险分层系统是克服当前精准医学翻译障碍的重要步骤,最终推进PDAC的个性化治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of radiology
World journal of radiology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
自引率
8.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信