{"title":"Reusable combinatorial libraries with high diversity for efficient multi-gene expression optimization in Escherichia coli.","authors":"Dongyuan Cheng, Qingyu Zhang, Zhimin Ou, Zhinan Xu","doi":"10.1007/s11274-025-04501-9","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient multi-gene expression in Escherichia coli is critical for advancing metabolic engineering and synthetic biology. However, existing strategies for combinatorial optimization remain labor-intensive and low-throughput. In addressing this challenge, a high-throughput platform was developed, encompassing the engineering of standardized genetic elements (promoters and 5' UTRs) with fluorescent reporters (e.g. eGFP, mCherry, TagBFP) to quantify expression variability. Libraries of single-, dual-, and tri-gene (dual-plasmid) constructs were assembled via Golden Gate, validated by IPTG induction, and applied to lycopene biosynthesis by replacing fluorescent genes with crtE, crtI, and crtB using Gibson assembly. The optimized tri-gene library was used to generate E. coli BL21(DE3) strains exhibiting variable levels of lycopene production, thereby demonstrating the platform's capacity to balance multi-gene pathways. Subsequent quantitative analysis by qPCR confirmed the uniformity of promoter-UTR combinations across the plasmid library. This modular platform, featuring reusable libraries and a dual-plasmid system, enables rapid exploration of multi-gene expression landscapes, offering a scalable tool for metabolic engineering and multi-enzyme co-expression.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 8","pages":"291"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04501-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient multi-gene expression in Escherichia coli is critical for advancing metabolic engineering and synthetic biology. However, existing strategies for combinatorial optimization remain labor-intensive and low-throughput. In addressing this challenge, a high-throughput platform was developed, encompassing the engineering of standardized genetic elements (promoters and 5' UTRs) with fluorescent reporters (e.g. eGFP, mCherry, TagBFP) to quantify expression variability. Libraries of single-, dual-, and tri-gene (dual-plasmid) constructs were assembled via Golden Gate, validated by IPTG induction, and applied to lycopene biosynthesis by replacing fluorescent genes with crtE, crtI, and crtB using Gibson assembly. The optimized tri-gene library was used to generate E. coli BL21(DE3) strains exhibiting variable levels of lycopene production, thereby demonstrating the platform's capacity to balance multi-gene pathways. Subsequent quantitative analysis by qPCR confirmed the uniformity of promoter-UTR combinations across the plasmid library. This modular platform, featuring reusable libraries and a dual-plasmid system, enables rapid exploration of multi-gene expression landscapes, offering a scalable tool for metabolic engineering and multi-enzyme co-expression.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.