Thomas Bailey-Schmidt, Christine V Saunders, Chloë E George, Thomas G Scorer, Lynn M R McCallum, Tracey E Madgett
{"title":"Exploring tricine as a novel red cell cryopreservative: Lessons and future directions.","authors":"Thomas Bailey-Schmidt, Christine V Saunders, Chloë E George, Thomas G Scorer, Lynn M R McCallum, Tracey E Madgett","doi":"10.1111/vox.70088","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Cryopreservation allows for storage of red blood cells (RBCs) beyond the standard 35-day period. Current glycerol-based methods are labour-intensive and scale-limited in application. Tricine has been identified as a potential alternative cryoprotectant (CPA), demonstrating efficacy in sheep RBC. This study aims to evaluate the biocompatibility and efficacy of tricine in human RBC cryopreservation.</p><p><strong>Materials and methods: </strong>Human and sheep RBCs were exposed to varying concentrations of tricine (2.0-20.0% w/v) or glycerol (20.0-40.0% w/v). Biocompatibility was assessed via 24-h incubation at 4°C, while cryoprotective efficacy was evaluated following freezing in liquid nitrogen, storage at -80°C and thawing at 37°C. RBC recovery was assessed via spectrophotometric estimation of haemolysis.</p><p><strong>Results: </strong>Tricine was biocompatible, with <1% haemolysis in both species. When frozen, tricine provided significant protection against cryoinjury in sheep RBC, with maximal recovery at 8.0% w/v (42.17% ± 10.96% of RBC recovered). However, tricine lacked cryopreservative efficacy in human RBC, with post-thaw recovery rates on par with those seen following unprotected freezing. Even at the highest performing concentration (10.0% w/v), human RBC recovery remained low (16.08% ± 2.96%), highlighting the ineffectiveness of tricine in preserving human RBC integrity. Further analyses revealed greater hydrophilicity in sheep haemoglobin, which potentially influences freezing tolerance.</p><p><strong>Conclusion: </strong>Despite promising results within the ovine model, tricine lacks CPA efficacy for human RBC. Species differences in RBC physiology likely contribute to these discrepancies. These findings emphasize the need for rigorous model selection in cryopreservation research and further investigation into CPA mechanisms.</p>","PeriodicalId":23631,"journal":{"name":"Vox Sanguinis","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vox Sanguinis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/vox.70088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Cryopreservation allows for storage of red blood cells (RBCs) beyond the standard 35-day period. Current glycerol-based methods are labour-intensive and scale-limited in application. Tricine has been identified as a potential alternative cryoprotectant (CPA), demonstrating efficacy in sheep RBC. This study aims to evaluate the biocompatibility and efficacy of tricine in human RBC cryopreservation.
Materials and methods: Human and sheep RBCs were exposed to varying concentrations of tricine (2.0-20.0% w/v) or glycerol (20.0-40.0% w/v). Biocompatibility was assessed via 24-h incubation at 4°C, while cryoprotective efficacy was evaluated following freezing in liquid nitrogen, storage at -80°C and thawing at 37°C. RBC recovery was assessed via spectrophotometric estimation of haemolysis.
Results: Tricine was biocompatible, with <1% haemolysis in both species. When frozen, tricine provided significant protection against cryoinjury in sheep RBC, with maximal recovery at 8.0% w/v (42.17% ± 10.96% of RBC recovered). However, tricine lacked cryopreservative efficacy in human RBC, with post-thaw recovery rates on par with those seen following unprotected freezing. Even at the highest performing concentration (10.0% w/v), human RBC recovery remained low (16.08% ± 2.96%), highlighting the ineffectiveness of tricine in preserving human RBC integrity. Further analyses revealed greater hydrophilicity in sheep haemoglobin, which potentially influences freezing tolerance.
Conclusion: Despite promising results within the ovine model, tricine lacks CPA efficacy for human RBC. Species differences in RBC physiology likely contribute to these discrepancies. These findings emphasize the need for rigorous model selection in cryopreservation research and further investigation into CPA mechanisms.
期刊介绍:
Vox Sanguinis reports on important, novel developments in transfusion medicine. Original papers, reviews and international fora are published on all aspects of blood transfusion and tissue transplantation, comprising five main sections:
1) Transfusion - Transmitted Disease and its Prevention:
Identification and epidemiology of infectious agents transmissible by blood;
Bacterial contamination of blood components;
Donor recruitment and selection methods;
Pathogen inactivation.
2) Blood Component Collection and Production:
Blood collection methods and devices (including apheresis);
Plasma fractionation techniques and plasma derivatives;
Preparation of labile blood components;
Inventory management;
Hematopoietic progenitor cell collection and storage;
Collection and storage of tissues;
Quality management and good manufacturing practice;
Automation and information technology.
3) Transfusion Medicine and New Therapies:
Transfusion thresholds and audits;
Haemovigilance;
Clinical trials regarding appropriate haemotherapy;
Non-infectious adverse affects of transfusion;
Therapeutic apheresis;
Support of transplant patients;
Gene therapy and immunotherapy.
4) Immunohaematology and Immunogenetics:
Autoimmunity in haematology;
Alloimmunity of blood;
Pre-transfusion testing;
Immunodiagnostics;
Immunobiology;
Complement in immunohaematology;
Blood typing reagents;
Genetic markers of blood cells and serum proteins: polymorphisms and function;
Genetic markers and disease;
Parentage testing and forensic immunohaematology.
5) Cellular Therapy:
Cell-based therapies;
Stem cell sources;
Stem cell processing and storage;
Stem cell products;
Stem cell plasticity;
Regenerative medicine with cells;
Cellular immunotherapy;
Molecular therapy;
Gene therapy.