Investigating the Adsorption Potential of Bentonite Nanoparticles as an Economical Adsorbent for Decontamination of Antibiotics From Aqueous Solution: Kinetics and Regeneration Studies
{"title":"Investigating the Adsorption Potential of Bentonite Nanoparticles as an Economical Adsorbent for Decontamination of Antibiotics From Aqueous Solution: Kinetics and Regeneration Studies","authors":"Sepideh Sahragard;Ali Naghizadeh","doi":"10.1109/TNB.2025.3589269","DOIUrl":null,"url":null,"abstract":"This study examines the adsorption efficacy of bentonite nanoparticles for removing Trimethoprim (TMP) and Penicillin G (PNG) antibiotics from aqueous solutions, emphasizing cost-effectiveness and operational efficiency. The bentonite nanoparticles, characterized by a surface area of 210–250 m2/g and a point of zero charge (pH<inline-formula> <tex-math>${}_{\\text {zpc}}\\text {)}$ </tex-math></inline-formula> of ~6, demonstrated optimal performance under acidic conditions (pH 3). At an adsorbent dosage of 0.1 g/L, initial antibiotic concentration of 100 mg/L, and contact time of 90 minutes (25°C), maximum adsorption capacities of 36.07 mg/g (TMP) and 39.43 mg/g (PNG) were achieved. Adsorption kinetics adhered to a pseudo-second-order model (R<inline-formula> <tex-math>${}^{{2}} =0.97$ </tex-math></inline-formula> for TMP; R<inline-formula> <tex-math>${}^{{2}} =0.99$ </tex-math></inline-formula> for PNG), suggesting chemisorption as the rate-limiting step. Isotherm studies aligned with the Freundlich and Dubinin–Radushkevich models, indicating heterogeneous surface interactions and predominantly physical adsorption mechanisms.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 4","pages":"498-511"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/11105493/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the adsorption efficacy of bentonite nanoparticles for removing Trimethoprim (TMP) and Penicillin G (PNG) antibiotics from aqueous solutions, emphasizing cost-effectiveness and operational efficiency. The bentonite nanoparticles, characterized by a surface area of 210–250 m2/g and a point of zero charge (pH${}_{\text {zpc}}\text {)}$ of ~6, demonstrated optimal performance under acidic conditions (pH 3). At an adsorbent dosage of 0.1 g/L, initial antibiotic concentration of 100 mg/L, and contact time of 90 minutes (25°C), maximum adsorption capacities of 36.07 mg/g (TMP) and 39.43 mg/g (PNG) were achieved. Adsorption kinetics adhered to a pseudo-second-order model (R${}^{{2}} =0.97$ for TMP; R${}^{{2}} =0.99$ for PNG), suggesting chemisorption as the rate-limiting step. Isotherm studies aligned with the Freundlich and Dubinin–Radushkevich models, indicating heterogeneous surface interactions and predominantly physical adsorption mechanisms.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).