Alba Timón-Gómez, Carolina Doerrier, Zuzana Sumbalová, Luiz F Garcia-Souza, Eleonora Baglivo, Luiza H D Cardoso, Erich Gnaiger
{"title":"Bioenergetic profiles and respiratory control in mitochondrial physiology: Precision analysis of oxidative phosphorylation.","authors":"Alba Timón-Gómez, Carolina Doerrier, Zuzana Sumbalová, Luiz F Garcia-Souza, Eleonora Baglivo, Luiza H D Cardoso, Erich Gnaiger","doi":"10.1113/EP092792","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative phosphorylation (OXPHOS) is fundamental to mitochondrial function. Respirometry with living cells provides limited information compared to precision OXPHOS analysis with mitochondrial preparations, including isolated mitochondria, tissue homogenates, permeabilized tissues, and permeabilized cells. We studied mouse mitochondria from brain, a glucose-dependent tissue, and from heart, which relies highly on fatty acid oxidation (FAO). HEK 293T cells were analysed as a widely used experimental model. Human peripheral blood mononuclear cells (PBMCs) and platelets were obtained from non-invasive liquid biopsies, considering their potential as mitochondrial biomarkers. Twenty respiratory states were interrogated applying two substrate-uncoupler-inhibitor titration (SUIT) reference protocols in parallel. Convergent electron transfer (ET) into the coenzyme Q junction increased OXPHOS and ET capacities compared to separately stimulated pathways. In mouse heart and human PBMCs, OXPHOS capacities were identical to ET capacities in every pathway state. While this equivalence applied to the NADH-linked pathway in platelets, ET capacity exceeded OXPHOS capacity supported by NADH-linked substrates plus succinate. Surprisingly, mouse brain exhibited the highest excess ET capacity in the NADH-linked pathway. In contrast, ET capacity of different batches of HEK 293T cells varied at constant OXPHOS capacity. Precision OXPHOS analysis enables attribution of respiratory performance to nutrient-specific pathways. In studies ranging from exercise physiology to mitochondrial diseases, metabolic adjustments must be distinguished from functional defects. Bioenergetic profiles obtained by precision OXPHOS analysis gain perspective in the context of comparative mitochondrial physiology.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092792","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative phosphorylation (OXPHOS) is fundamental to mitochondrial function. Respirometry with living cells provides limited information compared to precision OXPHOS analysis with mitochondrial preparations, including isolated mitochondria, tissue homogenates, permeabilized tissues, and permeabilized cells. We studied mouse mitochondria from brain, a glucose-dependent tissue, and from heart, which relies highly on fatty acid oxidation (FAO). HEK 293T cells were analysed as a widely used experimental model. Human peripheral blood mononuclear cells (PBMCs) and platelets were obtained from non-invasive liquid biopsies, considering their potential as mitochondrial biomarkers. Twenty respiratory states were interrogated applying two substrate-uncoupler-inhibitor titration (SUIT) reference protocols in parallel. Convergent electron transfer (ET) into the coenzyme Q junction increased OXPHOS and ET capacities compared to separately stimulated pathways. In mouse heart and human PBMCs, OXPHOS capacities were identical to ET capacities in every pathway state. While this equivalence applied to the NADH-linked pathway in platelets, ET capacity exceeded OXPHOS capacity supported by NADH-linked substrates plus succinate. Surprisingly, mouse brain exhibited the highest excess ET capacity in the NADH-linked pathway. In contrast, ET capacity of different batches of HEK 293T cells varied at constant OXPHOS capacity. Precision OXPHOS analysis enables attribution of respiratory performance to nutrient-specific pathways. In studies ranging from exercise physiology to mitochondrial diseases, metabolic adjustments must be distinguished from functional defects. Bioenergetic profiles obtained by precision OXPHOS analysis gain perspective in the context of comparative mitochondrial physiology.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.