Rubesh Ashok Kumar S. , Vasvini Mary D. , Suganya Josephine G.A.
{"title":"Incorporation of WCe oxides on Ti3C2Tx/gC3N4 bi-layers: An efficient photocatalyst under visible/sunlight irradiation","authors":"Rubesh Ashok Kumar S. , Vasvini Mary D. , Suganya Josephine G.A.","doi":"10.1016/j.flatc.2025.100920","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, WO<sub>3</sub> incorporated CeO<sub>2</sub> on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/gC<sub>3</sub>N<sub>4</sub> bi-layers (WCTG) were prepared using a facile hydrothermal method. The physicochemical properties of the WCTG were analyzed through various methods, including XRD, FT-IR, UV-DRS, AFM, XPS, BET, FE-SEM, HR-TEM, EDAX, and SAED. The XRD analysis indicated that WCTG exhibited a hexagonal crystal structure with a crystallite size of 39.6 nm. Additionally, the UV DRS analysis revealed that WCTG had a band gap energy of 2.79 eV, with its absorption edges confirming that all prepared ratios were situated within the visible spectrum. From the FE-SEM analysis, WCTG exhibited an agglomerated sheet-like morphology. The photocatalytic removal of Orange G (OG) under natural sunlight and visible light irradiation was effectively facilitated by Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, and gC<sub>3</sub>N<sub>4</sub>-based CeO<sub>2</sub> incorporated WO<sub>3</sub> nanomaterial exhibited an excellent degradation performance of 99.73 % under sunlight (180 min) and 99.8 % under visible light (300 min) irradiations. COD removal percentages for 5 ppm were 96.15 % under sunlight and 95.71 % under visible light. Compared to pristine WO<sub>3</sub> and CeO<sub>2</sub>, WCTG exhibited a 2-fold increase in degradation percentage. Various factors were discussed, such as preliminary optimization, kinetics, scavengers, and stability analysis. The results indicated that the presence of two carbon sources and a vast surface area facilitates the improved photocatalytic activities of WCTG under natural visible/sunlight for azo dye degradation.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"53 ","pages":"Article 100920"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245226272500114X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, WO3 incorporated CeO2 on Ti3C2Tx/gC3N4 bi-layers (WCTG) were prepared using a facile hydrothermal method. The physicochemical properties of the WCTG were analyzed through various methods, including XRD, FT-IR, UV-DRS, AFM, XPS, BET, FE-SEM, HR-TEM, EDAX, and SAED. The XRD analysis indicated that WCTG exhibited a hexagonal crystal structure with a crystallite size of 39.6 nm. Additionally, the UV DRS analysis revealed that WCTG had a band gap energy of 2.79 eV, with its absorption edges confirming that all prepared ratios were situated within the visible spectrum. From the FE-SEM analysis, WCTG exhibited an agglomerated sheet-like morphology. The photocatalytic removal of Orange G (OG) under natural sunlight and visible light irradiation was effectively facilitated by Ti3C2Tx, and gC3N4-based CeO2 incorporated WO3 nanomaterial exhibited an excellent degradation performance of 99.73 % under sunlight (180 min) and 99.8 % under visible light (300 min) irradiations. COD removal percentages for 5 ppm were 96.15 % under sunlight and 95.71 % under visible light. Compared to pristine WO3 and CeO2, WCTG exhibited a 2-fold increase in degradation percentage. Various factors were discussed, such as preliminary optimization, kinetics, scavengers, and stability analysis. The results indicated that the presence of two carbon sources and a vast surface area facilitates the improved photocatalytic activities of WCTG under natural visible/sunlight for azo dye degradation.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)