Muhammad Shoaib , Zhijing Wu , Jiping Jing , Fengming Li , Long Liu
{"title":"Band-gap properties of fluid-conveying deployable meta-pipes with periodic inertial amplification mechanisms","authors":"Muhammad Shoaib , Zhijing Wu , Jiping Jing , Fengming Li , Long Liu","doi":"10.1016/j.wavemoti.2025.103612","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the transverse and longitudinal wave motions of a fluid-conveying deployable meta-pipe incorporating periodic inertial amplification (IA) mechanisms are systematically investigated. The proposed structure aims to enhance vibration attenuation based on the band gap (BG) property in low-frequency ranges. The dynamic model of the IA mechanism is established to precisely characterize the inertial forces generated by the coupled axial-bending deformation in the base pipe structure. Based on the Bloch theorem, the dispersion curves are analyzed using the transfer matrix method (TMM). An experiment prototype is manufactured and subjected to vibration testing for validation of the theoretical model. Parametric analysis reveals that both the position and bandwidth of transverse and longitudinal BGs exhibit significant dependence on variations in: (1) fluid velocity, (2) deploying velocity, (3) IA mechanism’s parameters (mass and angle) and (4) the length of the unit cell. This research can establish both theoretical and experimental foundations for engineering design focused on enhanced vibration attenuation in conveying-fluid pipes.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103612"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001234","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the transverse and longitudinal wave motions of a fluid-conveying deployable meta-pipe incorporating periodic inertial amplification (IA) mechanisms are systematically investigated. The proposed structure aims to enhance vibration attenuation based on the band gap (BG) property in low-frequency ranges. The dynamic model of the IA mechanism is established to precisely characterize the inertial forces generated by the coupled axial-bending deformation in the base pipe structure. Based on the Bloch theorem, the dispersion curves are analyzed using the transfer matrix method (TMM). An experiment prototype is manufactured and subjected to vibration testing for validation of the theoretical model. Parametric analysis reveals that both the position and bandwidth of transverse and longitudinal BGs exhibit significant dependence on variations in: (1) fluid velocity, (2) deploying velocity, (3) IA mechanism’s parameters (mass and angle) and (4) the length of the unit cell. This research can establish both theoretical and experimental foundations for engineering design focused on enhanced vibration attenuation in conveying-fluid pipes.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.