{"title":"Wave propagation model by time series hybrid element method","authors":"Bahman Ansari, Alireza Firoozfar","doi":"10.1016/j.wavemoti.2025.103615","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a time domain boundary-finite element method is developed for solving wave propagation problems. By applying the weighted residual approach and using the static fundamental solutions as the weight function, the wave propagation equation is converted to simple boundary integral. In addition, the effects of domain integral related to inertia term are considered by applying the finite element method to the solution. Furthermore, after deriving the boundary-finite element (Hybrid) formulations, the solvable matrix of the equations in the discretized form is presented. In a novel approach, by estimating the temporal variations of the element nodes using Taylor and Fourier series, a time series discrete matrix is introduced for solving the equations which provides a higher degree of accuracy in compare to other time discretization approaches. Finally, the formulations and method are implemented into a computer algorithm and various examples are solved. The results demonstrated that the proposed time series hybrid approach (TSHEM) accurately models wave propagation problems with lower computational cost in compare to other numerical solutions, making it a preferable choice for solving complex problems with higher accuracy.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103615"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252500126X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a time domain boundary-finite element method is developed for solving wave propagation problems. By applying the weighted residual approach and using the static fundamental solutions as the weight function, the wave propagation equation is converted to simple boundary integral. In addition, the effects of domain integral related to inertia term are considered by applying the finite element method to the solution. Furthermore, after deriving the boundary-finite element (Hybrid) formulations, the solvable matrix of the equations in the discretized form is presented. In a novel approach, by estimating the temporal variations of the element nodes using Taylor and Fourier series, a time series discrete matrix is introduced for solving the equations which provides a higher degree of accuracy in compare to other time discretization approaches. Finally, the formulations and method are implemented into a computer algorithm and various examples are solved. The results demonstrated that the proposed time series hybrid approach (TSHEM) accurately models wave propagation problems with lower computational cost in compare to other numerical solutions, making it a preferable choice for solving complex problems with higher accuracy.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.