Hybrid nanogenerator with dual-mode sensing capability for intelligent material recognition and energy harvesting

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xue Li, Jiachen Ye, Haohao Zhang, Xiaoran Gong
{"title":"Hybrid nanogenerator with dual-mode sensing capability for intelligent material recognition and energy harvesting","authors":"Xue Li,&nbsp;Jiachen Ye,&nbsp;Haohao Zhang,&nbsp;Xiaoran Gong","doi":"10.1016/j.jallcom.2025.182701","DOIUrl":null,"url":null,"abstract":"<div><div>The hybrid nanogenerator (HNG) represents a transformative dual-mode sensing platform enabling concurrent material identification and temperature detection. This study fabricated electrospun polyvinylidene fluoride/barium titanate (PVDF/BTO) composite films as core functional components, where the PVDF matrix demonstrated exceptional ferroelectric responsiveness to ambient thermal fluctuations, while perovskite-structured BTO nanoparticles provided enhanced piezoelectric and dielectric characteristics essential for hybrid energy harvesting. Building upon this composite architecture, we engineered a triboelectric nanogenerator (Z-TENG) featuring two breakthrough capabilities: (i) quantitative characterization of contact materials through output voltage signatures, and (ii) intrinsic temperature sensing via PVDF's pyroelectric response. Synergistic BTO integration boosted the Z-TENG's voltage output by 157.7 % compared to pristine PVDF-based counterparts. Furthermore, the HNG system achieved 96 % material classification accuracy through machine learning-enhanced multimodal signal analysis, demonstrating a statistically significant improvement over conventional single-mode triboelectric systems (83.6 %). This study not only highlights the significant advantages of HNG in the field of object recognition, but also provides a new perspective and path for exploring more intelligent and efficient energy collection and object recognition technology.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1038 ","pages":"Article 182701"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825042628","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hybrid nanogenerator (HNG) represents a transformative dual-mode sensing platform enabling concurrent material identification and temperature detection. This study fabricated electrospun polyvinylidene fluoride/barium titanate (PVDF/BTO) composite films as core functional components, where the PVDF matrix demonstrated exceptional ferroelectric responsiveness to ambient thermal fluctuations, while perovskite-structured BTO nanoparticles provided enhanced piezoelectric and dielectric characteristics essential for hybrid energy harvesting. Building upon this composite architecture, we engineered a triboelectric nanogenerator (Z-TENG) featuring two breakthrough capabilities: (i) quantitative characterization of contact materials through output voltage signatures, and (ii) intrinsic temperature sensing via PVDF's pyroelectric response. Synergistic BTO integration boosted the Z-TENG's voltage output by 157.7 % compared to pristine PVDF-based counterparts. Furthermore, the HNG system achieved 96 % material classification accuracy through machine learning-enhanced multimodal signal analysis, demonstrating a statistically significant improvement over conventional single-mode triboelectric systems (83.6 %). This study not only highlights the significant advantages of HNG in the field of object recognition, but also provides a new perspective and path for exploring more intelligent and efficient energy collection and object recognition technology.
具有双模传感能力的混合纳米发电机,用于智能材料识别和能量收集
混合纳米发电机(HNG)代表了一种变革性的双模传感平台,可以同时进行材料识别和温度检测。本研究制备了电纺丝聚偏氟乙烯/钛酸钡(PVDF/BTO)复合薄膜作为核心功能组件,其中PVDF基质对环境热波动表现出优异的铁电响应性,而钙钛矿结构的BTO纳米颗粒为混合能量收集提供了增强的压电和介电特性。基于这种复合结构,我们设计了一种摩擦电纳米发电机(Z-TENG),具有两项突破性能力:(i)通过输出电压特征对接触材料进行定量表征,以及(ii)通过PVDF的热释电响应进行固有温度传感。与基于pvdf的同类产品相比,协同BTO集成将Z-TENG的电压输出提高了157.7 %。此外,HNG系统通过机器学习增强的多模态信号分析实现了96% %的材料分类精度,与传统的单模摩擦电系统(83.6 %)相比,在统计上有显著的改进。本研究不仅凸显了HNG在目标识别领域的显著优势,也为探索更加智能高效的能量采集和目标识别技术提供了新的视角和路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信