Luehao Shen , Zhipeng Li , Xiao Li , Xinping Long , Bisheng Tan
{"title":"Large π-π interconnected guanidine based high-energy compounds and their trigger bonds","authors":"Luehao Shen , Zhipeng Li , Xiao Li , Xinping Long , Bisheng Tan","doi":"10.1016/j.chphi.2025.100918","DOIUrl":null,"url":null,"abstract":"<div><div>TNB, triazole, tetrazole, furoxan, guanidine, etc. are the basic building blocks for building high-energy compounds. Compounds with different structures and properties can be obtained by combining them in different ways (through atomic or group bridging, spiking, fusing, etc.). How to measure the effectiveness of their connection is what we must consider when designing high-energy compounds. Guanidine is Y-aromatic, and it is connected with other single or several aromatic rings to form large π-π interconnected compounds. The large π-π separation energy can measure the additional stabilization energy of large π-π interconnected structures due to electron delocalization, which is a new index of aromatic extension or aromaticity of compounds. It is also a major index of molecular deformability of high-energy compounds proposed by us (such as resonance energy, strain energy, large π-π separation energy, molecular polarizability, etc.), how these molecular deformability indicators affect the energy and stability of explosive molecules is a question that needs to be answered. In this paper, the large π-π separation energies of large π-π interconnected guanidine derivatives are calculated by the density functional method and the design of isodesmic reactions. The influence of molecular deformability on trigger bonds is revealed, and the understanding of the nature of trigger bonds is improved.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100918"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
TNB, triazole, tetrazole, furoxan, guanidine, etc. are the basic building blocks for building high-energy compounds. Compounds with different structures and properties can be obtained by combining them in different ways (through atomic or group bridging, spiking, fusing, etc.). How to measure the effectiveness of their connection is what we must consider when designing high-energy compounds. Guanidine is Y-aromatic, and it is connected with other single or several aromatic rings to form large π-π interconnected compounds. The large π-π separation energy can measure the additional stabilization energy of large π-π interconnected structures due to electron delocalization, which is a new index of aromatic extension or aromaticity of compounds. It is also a major index of molecular deformability of high-energy compounds proposed by us (such as resonance energy, strain energy, large π-π separation energy, molecular polarizability, etc.), how these molecular deformability indicators affect the energy and stability of explosive molecules is a question that needs to be answered. In this paper, the large π-π separation energies of large π-π interconnected guanidine derivatives are calculated by the density functional method and the design of isodesmic reactions. The influence of molecular deformability on trigger bonds is revealed, and the understanding of the nature of trigger bonds is improved.