Additive manufacturing of structured grinding wheels with a composite of Cu38Ni34Fe13Sn10Ti5 high-entropy alloy and Ni/Ti dual-coated diamonds: Interfacial characteristics, mechanical properties and grinding performance
IF 4.6 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianyu Wang , Guoqin Huang , Yangli Xu , Wei Zhang , Wenhan Zeng , Chunjin Wang , Xipeng Xu
{"title":"Additive manufacturing of structured grinding wheels with a composite of Cu38Ni34Fe13Sn10Ti5 high-entropy alloy and Ni/Ti dual-coated diamonds: Interfacial characteristics, mechanical properties and grinding performance","authors":"Jianyu Wang , Guoqin Huang , Yangli Xu , Wei Zhang , Wenhan Zeng , Chunjin Wang , Xipeng Xu","doi":"10.1016/j.ijrmhm.2025.107360","DOIUrl":null,"url":null,"abstract":"<div><div>The use of Laser Powder Bed Fusion (LPBF) for additive manufacturing of metal-bonded diamond composites is emerging as a significant and challenging issue, particularly in the fabrication of structured abrasive wheels suitable for precision machining in aerospace, defense, and military industries. In this work, the LPBF process parameters for a new composite of Cu38Ni34Fe13Sn10Ti5 high-entropy alloy and Ni/Ti dual-coated diamonds were optimized based on mechanical performance and interfacial reaction considerations, and fabricated structured abrasive wheels for performance evaluation. Results indicated that the parameter combination of 120 W laser power, 1600 mm/s scan speed, 100 μm hatch spacing, and 30 μm layer thickness achieved superior forming quality and high mechanical strength. The formation of TiC interfacial reaction layers between diamond and the metal matrix was experimentally confirmed. Friction wear test demonstrated the composites' excellent self-sharpening capability, which is critical for diamond tools. Normal and porous structure (named Nor-Str and Por-Str) abrasive wheels were successfully fabricated, with Por-Str exhibiting significantly lower grinding forces and thermal accumulation. These findings establish a technical foundation for the additive manufacturing of diamond-metal composites and the efficient fabrication of functional abrasive tools.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"133 ","pages":"Article 107360"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825003257","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of Laser Powder Bed Fusion (LPBF) for additive manufacturing of metal-bonded diamond composites is emerging as a significant and challenging issue, particularly in the fabrication of structured abrasive wheels suitable for precision machining in aerospace, defense, and military industries. In this work, the LPBF process parameters for a new composite of Cu38Ni34Fe13Sn10Ti5 high-entropy alloy and Ni/Ti dual-coated diamonds were optimized based on mechanical performance and interfacial reaction considerations, and fabricated structured abrasive wheels for performance evaluation. Results indicated that the parameter combination of 120 W laser power, 1600 mm/s scan speed, 100 μm hatch spacing, and 30 μm layer thickness achieved superior forming quality and high mechanical strength. The formation of TiC interfacial reaction layers between diamond and the metal matrix was experimentally confirmed. Friction wear test demonstrated the composites' excellent self-sharpening capability, which is critical for diamond tools. Normal and porous structure (named Nor-Str and Por-Str) abrasive wheels were successfully fabricated, with Por-Str exhibiting significantly lower grinding forces and thermal accumulation. These findings establish a technical foundation for the additive manufacturing of diamond-metal composites and the efficient fabrication of functional abrasive tools.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.